×

Formulation of Euler-Lagrange equations for fractional variational problems. (English) Zbl 1070.49013

The author gives an analogue of the Euler equation for the variational problem for the functional \(J[y]= \int_a^b F(x,y,y^{(\alpha)}_+, y^{(\beta)}_-)\; dx\) where \(y^{(\alpha)}_+\) and \( y^{(\beta)}_-\) stand, respectively, for the left-hand sided and right-hand sided fractional derivatives.

MSC:

49K05 Optimality conditions for free problems in one independent variable
26A33 Fractional derivatives and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bliss, G. A., Lectures on the Calculus of Variations (1963), University of Chicago Press
[2] Gelfand, I. M.; Fomin, S. V., Calculus of Variations (1963), Prentice-Hall · Zbl 0127.05402
[3] Weinstock, R., Calculus of Variations with Applications to Physics and Engineering (1974), Dover · Zbl 0296.49001
[4] Dym, C. L.; Shames, I. H., Solid Mechanics: A Variational Approach (1973), McGraw-Hill: McGraw-Hill New York
[5] Hestenes, M. R., Calculus of Variations and Optimal Control Theory (1966), John Wiley & Sons · Zbl 0173.35703
[6] Gregory, J.; Lin, C., Constrained Optimization in the Calculus of Variations and Optimal Control Theory (1992), Van Nostrand-Reinhold
[7] Agrawal, O. P.; Gregory, J.; Spector, K. P., A bliss-type multiplier rule for constrained variational problems with time delay, J. Math. Anal. Appl., 210, 702-711 (1997) · Zbl 0903.49004
[8] Reddy, J. N., Energy and Variational Methods in Applied Mechanics: With an Introduction to the Finite Element Method (1984), John Wiley & Sons: John Wiley & Sons New York · Zbl 0635.73017
[9] Riewe, F., Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E, 53, 1890-1899 (1996)
[10] Riewe, F., Mechanics with fractional derivatives, Phys. Rev. E, 55, 3582-3592 (1997)
[11] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), John Wiley & Sons: John Wiley & Sons New York · Zbl 0789.26002
[12] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives—Theory and Applications (1993), Gordon and Breach: Gordon and Breach Longhorne, PA · Zbl 0818.26003
[13] Oldham, K. B.; Spanier, J., The Fractional Calculus (1974), Academic Press: Academic Press New York · Zbl 0428.26004
[14] Gorenflo, R.; Mainardi, F., Fractional calculus: Integral and differential equations of fractional order, (Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer-Verlag: Springer-Verlag New York), 223-276 · Zbl 1438.26010
[15] Mainardi, F., Fractional calculus: Some basic problems in continuum and statistical mechanics, (Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer-Verlag: Springer-Verlag New York), 291-348 · Zbl 0917.73004
[16] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press New York · Zbl 0918.34010
[17] Butzer, P. L.; Westphal, U., An introduction to fractional calculus, (Hilfer, R., Applications of Fractional Calculus in Physics (2000), World Scientific: World Scientific New Jersey), 1-85 · Zbl 0987.26005
[18] Bagley, R. L.; Torvik, P. J., On the fractional calculus model of viscoelastic behavior, J. Rheology, 30, 133-155 (1986) · Zbl 0613.73034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.