×

Surface superconductivity in \(3\) dimensions. (English) Zbl 1051.35090

Summary: We study the Ginzburg-Landau system for a superconductor occupying a \(3\)-dimensional bounded domain, and improve the estimate of the upper critical field \(H_{C_{3}}\) obtained by K. Lu and X. Pan [in J. Differ. Equations 168, No. 2, 386–452 (2000; Zbl 0972.35152)]. We also analyze the behavior of the order parameters. We show that, under an applied magnetic field lying below and not far from \(H_{C_{3}}\), order parameters concentrate in a vicinity of a sheath of the surface that is tangential to the applied field, and exponentially decay both in the normal and tangential directions away from the sheath in the \(L^{2}\) sense. As the applied field decreases further but keeps in between and away from \(H_{C_{2}}\) and \(H_{C_{3}}\), the superconducting sheath expands but does not cover the entire surface, and superconductivity at the surface portion orthogonal to the applied field is always very weak. This phenomenon is significantly different to the surface superconductivity on a cylinder of infinite height studied by X. Pan [Commun. Math. Phys. 228, 327–370 (2002; Zbl 1004.82020)], where under an axial applied field lying in-between \(H_{C_{2}}\) and \(H_{C_{3}}\) the entire surface is in the superconducting state.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
82D55 Statistical mechanics of superconductors
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Shmuel Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of \?-body Schrödinger operators, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. · Zbl 0503.35001
[2] Y. Almog, Non-linear surface superconductivity for type II superconductors in the large-domain limit, Arch. Ration. Mech. Anal. 165 (2002), no. 4, 271 – 293. · Zbl 1016.82036 · doi:10.1007/s00205-002-0224-7
[3] P. Bauman, D. Phillips, and Q. Tang, Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, Arch. Rational Mech. Anal. 142 (1998), no. 1, 1 – 43. · Zbl 0922.35157 · doi:10.1007/s002050050082
[4] Andrew Bernoff and Peter Sternberg, Onset of superconductivity in decreasing fields for general domains, J. Math. Phys. 39 (1998), no. 3, 1272 – 1284. · Zbl 1056.82523 · doi:10.1063/1.532379
[5] S. J. Chapman, Nucleation of superconductivity in decreasing fields. I, II, European J. Appl. Math. 5 (1994), no. 4, 449 – 468, 469 – 494. · Zbl 0820.35124
[6] S. J. Chapman, S. D. Howison, and J. R. Ockendon, Macroscopic models for superconductivity, SIAM Rev. 34 (1992), no. 4, 529 – 560. · Zbl 0769.73068 · doi:10.1137/1034114
[7] Manuel del Pino, Patricio L. Felmer, and Peter Sternberg, Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys. 210 (2000), no. 2, 413 – 446. · Zbl 0982.35077 · doi:10.1007/s002200050786
[8] P. G. De Gennes, Superconductivity of Metals and Alloys, W. A. Benjamin, New York, 1966. · Zbl 0138.22801
[9] Qiang Du, Max D. Gunzburger, and Janet S. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity, SIAM Rev. 34 (1992), no. 1, 54 – 81. · Zbl 0787.65091 · doi:10.1137/1034003
[10] Monique Dauge and Bernard Helffer, Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators, J. Differential Equations 104 (1993), no. 2, 243 – 262. · Zbl 0784.34021 · doi:10.1006/jdeq.1993.1071
[11] Giovanni P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I, Springer Tracts in Natural Philosophy, vol. 38, Springer-Verlag, New York, 1994. Linearized steady problems. Giovanni P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. II, Springer Tracts in Natural Philosophy, vol. 39, Springer-Verlag, New York, 1994. Nonlinear steady problems. · Zbl 0949.35004
[12] L. D. Landau, Collected papers of L. D. Landau, Edited and with an introduction by D. ter Haar. Second printing, Gordon and Breach Science Publishers, New York-London-Paris, 1967.
[13] T. Giorgi and D. Phillips, The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (1999), no. 2, 341 – 359. · Zbl 0920.35058 · doi:10.1137/S0036141097323163
[14] Bernard Helffer, Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, vol. 1336, Springer-Verlag, Berlin, 1988. · Zbl 0647.35002
[15] Bernard Helffer and Abderemane Morame, Magnetic bottles in connection with superconductivity, J. Funct. Anal. 185 (2001), no. 2, 604 – 680. · Zbl 1078.81023 · doi:10.1006/jfan.2001.3773
[16] Bernard Helffer and Abderemane Morame, Magnetic bottles for the Neumann problem: the case of dimension 3, Proc. Indian Acad. Sci. Math. Sci. 112 (2002), no. 1, 71 – 84. Spectral and inverse spectral theory (Goa, 2000). · Zbl 1199.81016 · doi:10.1007/BF02829641
[17] B. Helffer and X. B. Pan, Upper critical field and location of surface nucleation of superconductivity, Ann. L’I.H.P. Analyse non Linéaire, 20 (2003), 145-181. · Zbl 1060.35132
[18] Hala T. Jadallah, The onset of superconductivity in a domain with a corner, J. Math. Phys. 42 (2001), no. 9, 4101 – 4121. · Zbl 1063.82041 · doi:10.1063/1.1387466
[19] H. T. Jadallah, J. Rubinstein and P. Sternberg, Phase transition curves for mesoscopic superconducting samples, Phys. Rev. Lett., 82 (1999), 2935-2938.
[20] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Applied Mathematical Sciences, vol. 49, Springer-Verlag, New York, 1985. Translated from the Russian by Jack Lohwater [Arthur J. Lohwater]. · Zbl 0588.35003
[21] Kening Lu and Xing-Bin Pan, Gauge invariant eigenvalue problems in \?² and in \?²\(_{+}\), Trans. Amer. Math. Soc. 352 (2000), no. 3, 1247 – 1276. · Zbl 1053.35124
[22] Kening Lu and Xing-Bin Pan, Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Phys. 40 (1999), no. 6, 2647 – 2670. · Zbl 0943.35058 · doi:10.1063/1.532721
[23] Kening Lu and Xing-Bin Pan, Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity, Phys. D 127 (1999), no. 1-2, 73 – 104. · Zbl 0934.35174 · doi:10.1016/S0167-2789(98)00246-2
[24] Kening Lu and Xing-Bin Pan, Surface nucleation of superconductivity in 3-dimensions, J. Differential Equations 168 (2000), no. 2, 386 – 452. Special issue in celebration of Jack K. Hale’s 70th birthday, Part 2 (Atlanta, GA/Lisbon, 1998). · Zbl 0972.35152 · doi:10.1006/jdeq.2000.3892
[25] Richard Montgomery, Hearing the zero locus of a magnetic field, Comm. Math. Phys. 168 (1995), no. 3, 651 – 675. · Zbl 0827.58076
[26] Xing-Bin Pan, Surface superconductivity in applied magnetic fields above \?_{\?\(_{2}\)}, Comm. Math. Phys. 228 (2002), no. 2, 327 – 370. · Zbl 1004.82020 · doi:10.1007/s002200200641
[27] Xing-Bin Pan, Upper critical field for superconductors with edges and corners, Calc. Var. Partial Differential Equations 14 (2002), no. 4, 447 – 482. · Zbl 1006.35090 · doi:10.1007/s005260100111
[28] X. B. Pan, Superconducting thin films and the effect of de Gennes parameter, SIAM J. Math. Anal., 34 (2003), 957-991. · Zbl 1044.35094
[29] X. B. Pan, Superconductivity near critical temperature, J. Math. Phys., 44 (2003), 2639-2678. · Zbl 1062.82057
[30] Xing-Bin Pan and Keng-Huat Kwek, Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains, Trans. Amer. Math. Soc. 354 (2002), no. 10, 4201 – 4227. · Zbl 1004.35110
[31] Jacob Rubinstein, Six lectures on superconductivity, Boundaries, interfaces, and transitions (Banff, AB, 1995) CRM Proc. Lecture Notes, vol. 13, Amer. Math. Soc., Providence, RI, 1998, pp. 163 – 184. · Zbl 0921.35161
[32] D. Saint-James and P. G. De Gennes, Onset of superconductivity in decreasing fields, Physics Letters, 6 : (5) (1963), 306-308.
[33] E. Sandier and S. Serfaty, The decrease of bulk-superconductivity close to the second critical field in the Ginzburg-Landau model, SIAM J. Math. Anal., 34 (2003), 939-956. · Zbl 1030.82015
[34] D. Saint-James and G. Sarma and E. J. Thomas, Type II Superconductivity, Pergamon Press, Oxford, 1969.
[35] M. Tinkham, Introduction to Superconductivity, McGraw-Hill, New York, 1975.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.