×

Splitting fields for \(E_8\)-torsors. (English) Zbl 1048.11031

The author shows that every torsor for the split algebraic group \(E_8\) over a field becomes trivial over some separable extension of degree dividing \(2^6\cdot 3^2\cdot 5= 2880\). This improves a bound \((2^9\cdot 3^3\cdot 5= 69120)\) by J. Tits [C. R. Acad. Sci., Paris, Sér. I 315, No. 11, 1131–1138 (1992; Zbl 0823.20042)] and, by the author’s computation of Grothendieck’s torsion index of \(E_8\), it turns out that the author’s bound is optimal.

MSC:

11E72 Galois cohomology of linear algebraic groups
14M17 Homogeneous spaces and generalizations
20G15 Linear algebraic groups over arbitrary fields

Citations:

Zbl 0823.20042

Software:

GAP
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Aschbacher, On the maximal subgroups of the finite classical groups , Invent. Math. 76 (1984), 469–514. · Zbl 0537.20023
[2] R. Baeza, Quadratic Forms over Semilocal Rings , Lecture Notes in Math. 655 , Springer, Berlin, 1978. · Zbl 0382.10014
[3] E. Bayer-Fluckiger and H. W. Lenstra Jr., Forms in odd degree extensions and self-dual normal bases , Amer. J. Math. 112 (1990), 359–373. JSTOR: · Zbl 0729.12006
[4] F. van der Blij and T. A. Springer, The arithmetics of octaves and of the group \(G_2\) , Indag. Math. 21 (1959), 406–418. · Zbl 0089.25803
[5] A. Borel and T. A. Springer, Rationality properties of linear algebraic groups, II , Tôhoku Math. J. (2) 20 (1968), 443–497. · Zbl 0211.53302
[6] N. Bourbaki, Éléments de mathématique, fasc. 34: Groupes et algèbres de Lie, chapitres 4–6 , Masson, Paris, 1981.
[7] R. Brauer, On groups whose order contains a prime number to the first power, I, II , Amer. J. Math. 64 (1942), 401–420., 421–440., Mathematical Reviews (MathSciNet): JSTOR: links.jstor.org · Zbl 0061.03703
[8] –. –. –. –., Über endliche lineare Gruppen von Primzahlgrad , Math. Ann. 169 (1967), 73–96. · Zbl 0166.28903
[9] –. –. –. –., ”On simple groups of order \(5\cdot 3^a\cdot 2^b\)” in Collected Papers, Vol. 2: Finite Groups , ed. P. Fong and W. J. Wong, Mathematicians of Our Time 18 , MIT Press, Cambridge, Mass., 1980, 421–470.
[10] W. Burnside, Theory of Groups of Finite Order , 2nd ed., Dover, New York, 1955. · Zbl 0064.25105
[11] R. Carter, Conjugacy classes in the Weyl group , Compositio Math. 25 (1972), 1–59. · Zbl 0254.17005
[12] F. Cole, Simple groups as far as order 660 , Amer. J. Math. 15 (1893), 303–315. JSTOR: · JFM 25.0205.03
[13] J.-L. Colliot-Thélène and D. Coray, L’équivalence rationnelle sur les points fermés des surfaces rationnelles fibrées en coniques , Compositio Math. 39 (1979), 301–332. · Zbl 0386.14003
[14] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups , Oxford Univ. Press, New York, 1985. · Zbl 0568.20001
[15] W. Feit, ”On finite linear groups in dimension at most 10” in Proceedings of the Conference on Finite Groups (Park City, Utah, 1975) , ed. W. R. Scott and F. Gross, Academic Press, New York, 1976, 397–407. · Zbl 0374.20009
[16] The GAP Group, GAP – Groups, Algorithms, and Programming , version 4.2, Lehrstuhl D für Mathematik, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; University of St. Andrews, Fife, Scotland, 2000,
[17] R. S. Garibaldi, The Rost invariant has trivial kernel for quasi-split groups of low rank , Comment. Math. Helv. 76 (2001), 684–711. · Zbl 1001.20042
[18] P. Gille, La \(R\)-équivalence sur les groupes algébriques réductifs définis sur un corps global , Inst. Hautes Études Sci. Publ. Math. 86 (1997), 199–235. · Zbl 0943.20044
[19] –. –. –. –., Invariants cohomologiques de Rost en caractéristique positive , \(K\)-Theory 21 (2000), 57–100. · Zbl 0993.20031
[20] D. Gorenstein, Finite Groups , 2nd ed., Chelsea, New York, 1980.
[21] R. L. Griess Jr., Elementary abelian \(p\)-subgroups of algebraic groups , Geom. Dedicata 39 (1991), 253–305. · Zbl 0733.20023
[22] A. Grothendieck, ”Torsion homologique et sections rationnelles” in Anneaux de Chow et applications , Séminaire C. Chevalley 2 , Secrétariat mathématique, Paris, 1958, exp. 5.
[23] N. Jacobson, Composition algebras and their automorphisms , Rend. Circ. Mat. Palermo (2) 7 (1958), 55–80. · Zbl 0083.02702
[24] P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups , London Math. Soc. Lecture Note Ser. 129 , Cambridge Univ. Press, Cambridge, 1990. · Zbl 0697.20004
[25] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The Book of Involutions , Amer. Math. Soc. Colloq. Publ. 44 , Amer. Math. Soc., Providence, 1998. · Zbl 0955.16001
[26] D. H. Lehmer, On a problem of Störmer , Illinois J. Math. 8 (1964), 57–79. · Zbl 0124.27202
[27] H. P. Petersson and M. L. Racine, An elementary approach to the Serre-Rost invariant of Albert algebras , Indag. Math. (N.S.) 7 (1996), 343–365. · Zbl 0872.17029
[28] A. Pfister, Quadratische Formen in beliebigen Körpern , Invent. Math. 1 (1966), 116–132. · Zbl 0142.27203
[29] M. Rost, A (\(\modd 3\)) invariant for exceptional Jordan algebras , C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), 823–827. · Zbl 0756.17014
[30] L. H. Rowen, Ring Theory, Vol. II , Pure Appl. Math. 128 , Academic Press, Boston, 1988.
[31] –. –. –. –., Are \(p\)-algebras having cyclic quadratic extensions necessarily cyclic? , J. Algebra 215 (1999), 205–228. · Zbl 0932.16012
[32] J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres , J. Reine Angew. Math. 327 (1981), 12–80. · Zbl 0468.14007
[33] I. Schur, ”Über eine Klasse von endlichen Gruppen linearer Substitutionen” in Sitz. der Preussischen Akad. Berlin (1905), 77–91.; Gesammelte Abhandlungen, Vol. 1 , Springer, Berlin, 1973, 128–142. · JFM 36.0194.02
[34] J.-P. Serre, Lectures on the Mordell-Weil Theorem , Aspects Math. E15 , Vieweg, Braunhschweig, Germany, 1989.
[35] ——–, Cohomologie galoisienne , 5th ed., Lecture Notes in Math. 5 , Springer, Berlin, 1994.
[36] –. –. –. –., Cohomologie galoisienne: progrès et problèmes , Astérisque 227 (1995), 229–257., Séminaire Bourbaki 1993/94, no. 783. · Zbl 0837.12003
[37] C. C. Sims, ”Computational methods in the study of permutation groups” in Computational Problems in Abstract Algebra (Oxford, 1967) , ed. J. Leech, Pergamon, Oxford, 1970, 169–183. · Zbl 0215.10002
[38] T. A. Springer, Sur les formes quadratiques d’indice zéro , C. R. Acad. Sci. Paris Sér. I Math. 234 (1952), 1517–1519. · Zbl 0046.24303
[39] D. A. Suprunenko, Soluble and Nilpotent Linear Groups , Amer. Math. Soc., Providence, 1963. · Zbl 0114.02201
[40] J. Tits, Sur les degrés des extensions de corps déployant les groupes algébriques simples , C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 1131–1138. · Zbl 0823.20042
[41] B. Totaro, The torsion index of \(E_8\) and other groups , preprint, 2003.
[42] B. Veisfeiler [B. Ju. Veĭsfeĭler], Certain properties of singular semisimple algebraic groups over non-closed fields , Trudy Moskov. Mat. Obshch. 20 (1969), 111–136.; English translation in Trans. Moscow Math. Soc. (1971), 109–134.
[43] W. C. Waterhouse, Introduction to Affine Group Schemes , Grad. Texts in Math. 66 , Springer, New York, 1979. · Zbl 0442.14017
[44] H. Wielandt, Finite Permutation Groups , Academic Press, New York, 1964. · Zbl 0138.02501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.