×

Frege meets Dedekind: A neologicist treatment of real analysis. (English) Zbl 1014.03013

Summary: This paper uses neo-Fregean-style abstraction principles to develop the integers from the natural numbers (assuming Hume’s Principle), the rational numbers from the integers, and the real numbers from the rationals. The first two are first-order abstractions that treat pairs of numbers: \[ \text{INT}(a,b)=\text{INT}(c,d)\equiv (a+d) = (b+c).\tag{DIF} \]
\[ \begin{aligned} Q(m,n) & = Q(p,q)\equiv (n=0 \& q=0)\tag{QUOT}\\ & \vee (n\neq 0 \& q \neq 0 \& m\cdot q=n\cdot p).\end{aligned} \] The development of the real numbers is an adaption of the Dedekind program involving “cuts” of rational numbers. Let \(P\) be a property (of rational numbers) and \(r\) a rational number. Say that \(r\) is an upper bound of \(P\), written \(P\leq r\), if for any rational number \(s\), if \(P\leq s\) then either \(s < r\) or \(s = r\). In other words, \(P\leq r\) if \(r\) is greater than or equal to any rational number that \(P\) applies to. Consider the Cut Abstraction Principle: \[ \forall P \forall Q(C(P) =C(Q)\equiv\forall r\;(P\leq r\equiv Q\leq r)).\tag{CP} \] In other words, the cut of \(P\) is identical to the cut of \(Q\) if and only if \(P\) and \(Q\) share all of their upper bounds. The axioms of second-order real analysis can be derived from (CP), just as the axioms of second-order Peano Arithmetic can be derived from Hume’s Principle. The paper raises some of the philosophical issues connected with the neo-Fregean program, using the above abstraction principles as case studies.

MSC:

03A05 Philosophical and critical aspects of logic and foundations
00A30 Philosophy of mathematics
03B15 Higher-order logic; type theory (MSC2010)
03B30 Foundations of classical theories (including reverse mathematics)
03F35 Second- and higher-order arithmetic and fragments
26A03 Foundations: limits and generalizations, elementary topology of the line
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Boolos, G., ”The consistency of Frege’s Foundations of Arithmetic ”, pp. 3–20 in On Being and Saying: Essays in Honor of Richard Cartwright , The MIT Press, Cambridge, 1987. · Zbl 0972.03503
[2] Boolos, G., ”Iteration again”, Philosophical Topics , vol. 17 (1989), pp. 5–21. · Zbl 0972.03511
[3] Boolos, G., “Is Hume’s Principle analytic?” pp. 245–61 in Language, Thought, and Logic , edited by Jr. Heck, R. G., Oxford University Press, Oxford, 1997. · Zbl 0938.03506
[4] Clark, P., ”Indefinite extensibility and set theory”, Talk to Arché Workshop on Abstraction, University of St. Andrews, 2000.
[5] Cook, R. T., ”The state of the economy: Neo-logicism and inflation”, Philosophia Mathematica. Series 3 , vol. 10 (2002), pp. 43–66. · Zbl 1003.03007 · doi:10.1093/philmat/10.1.43
[6] Dedekind, R., ”Continuity and irrational numbers”, pp. 1–27 in Essays on the Theory of Numbers , edited by W. W. Beman, Dover Publications Inc., New York, 1963. · Zbl 0112.28101
[7] Dedekind, R., ”The nature and meaning of numbers”, pp. 31–115 in Essays on the Theory of Numbers , edited by W. W. Beman, Dover Publications Inc., New York, 1963. · Zbl 0112.28101
[8] Dummett, M., The Seas of Language , The Clarendon Press, Oxford, 1993. · Zbl 0875.03033
[9] Field, H., Science Without Numbers. A Defence of Nominalism , Princeton University Press, Princeton, 1980. · Zbl 0454.00015
[10] Fine, K., ”The limits of abstraction”, pp. 503–629 in The Philosophy of Mathematics Today , Oxford University Press, New York, 1998. · Zbl 0922.03011
[11] Frege, G., Begriffsschrift, Eine der arithmetischen Nachgebildete Formelsprache des Reinen Denkens , Louis Nebert, Halle, 1879.
[12] Frege, G., ”Über die Grundlagen der Geometrie”, Jahresbericht der Mathematiker-Vereinigung , vol. 12 (1903), pp. 319–24, 368–75. · JFM 34.0525.02
[13] Frege, G., ”Über die Grundlagen der Geometrie”, Jahresbericht der Mathematiker-Vereinigung , vol. 15 (1906), pp. 293–309, 377–403, 423–30. · JFM 37.0485.01
[14] Frege, G., Die Grundlagen der Arithmetik , Philosophical Library, New York, 1950. · Zbl 0041.14701
[15] Frege, G., Grundgesetze der Arithmetik I , Georg Olms Verlagsbuchhandlung, Hildesheim, 1962. · JFM 25.0101.02
[16] Frege, G., On the Foundations of Geometry and Formal Theories of Arithmetic , Yale University Press, New Haven, 1971. · Zbl 0236.02003
[17] Goldfarb, W. D., ”Logic in the twenties: The nature of the quantifier”, The Journal of Symbolic Logic , vol. 44 (1979), pp. 351–68. JSTOR: · Zbl 0438.03001 · doi:10.2307/2273128
[18] Hale, B., ”Reals by abstraction”, Philosophia Mathematica, Series III , vol. 8 (2000), pp. 100–123. · Zbl 0968.03010 · doi:10.1093/philmat/8.2.100
[19] Hale, B., and C. Wright, ”To bury Caesar...”, pp. 335–96 in The Reason’s Proper Study , Oxford University Press, Oxford, 2001. · Zbl 1005.03006
[20] Heck, R. G., Jr., ”Finitude and Hume’s Principle”, Journal of Philosophical Logic , vol. 26 (1997), pp. 589–617. · Zbl 0885.03045 · doi:10.1023/A:1004299720847
[21] Ramsey, F., ”The foundations of mathematics”, Proceedings of the London Mathematical Society , vol. 25 (1925), pp. 338–84. · JFM 52.0046.01
[22] Russell, B., Introduction to Mathematical Philosophy , 2d edition, Dover Publications Inc., New York, 1993. · Zbl 0865.03001
[23] Shapiro, S., Foundations Without Foundationalism. A Case for Second-Order Logic , The Clarendon Press, Oxford, 1991. · Zbl 0732.03002
[24] Shapiro, S., Philosophy of Mathematics: Structure and Ontology , Oxford University Press, New York, 1997. · Zbl 0897.00004
[25] Shapiro, S., and A. Weir, ”New V, ZF, and abstraction”, Philosophia Mathematica, Series III , vol. 7 (1999), pp. 293–321. · Zbl 0953.03061 · doi:10.1093/philmat/7.3.293
[26] Shapiro, S., Thinking About Mathematics: The Philosophy of Mathematics , Oxford University Press, Oxford, 2000. · Zbl 0990.00005
[27] Shapiro, S., ”Prolegomenon to any future neo-logicist set theory: Extensionality and indefinite extensibility”, forthcoming in British Journal for the Philosophy of Science . · Zbl 1041.03004 · doi:10.1093/bjps/54.1.59
[28] van Heijenoort, J., ”Logic as calculus and logic as language”, Synthese , vol. 17 (1967), pp. 324–30. · Zbl 0154.00305 · doi:10.1007/BF00485036
[29] Weir, A., “Neo-Fregeanism: An embarrassment of riches?” Talk to Arché workshop on abstraction, University of St. Andrews, 2000.
[30] Wright, C., Frege’s Conception of Numbers as Objects , Aberdeen University Press, Aberdeen, 1983. · Zbl 0524.03005
[31] Wright, C., ”On the philosophical significance of Frege’s theorem”, pp. 201–44 in Language, Thought, and Logic , edited by Jr.,R. G. Heck, Oxford University Press, Oxford, 1997. · Zbl 0938.03508
[32] Wright, C., “Is Hume’s Principle analytic?” Notre Dame Journal of Formal Logic , vol. 40 (1999), pp. 6–30. · Zbl 0968.03009 · doi:10.1305/ndjfl/1039096303
[33] Wright, C., ”Neo-Fregean foundations for real analysis: Some reflections on Frege’s Constraint”, Notre Dame Journal of Formal Logic , vol. 41 (2000), pp. 317–34. · Zbl 1014.03012 · doi:10.1305/ndjfl/1038336879
[34] Wright, C., and B. Hale, ”Implicit definition and the a priori”, pp. 286–319 in New Essays on the a Priori , edited by P. Boghossian and C. Peacocke, Oxford University Press, Oxford, 2000.špace-22pt
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.