×

On injectivity and nuclearity for operator spaces. (English) Zbl 1010.46060

Operator spaces can be regarded as quantized Banach spaces and it is interesting to introduce quantized analogues of the theory of Banach spaces. A quantized object being recently investigated is an injective operator space.
An operator space \(V\) is said to be injective (or \(1\)-injective, according to M. Neal and B. Russo [C. R. Acad. Sci., Paris, Sér. I, Math. 331, 873–878 (2000; Zbl 0973.47052)]) if for any operator spaces \(W_1 \subseteq W_2\), each complete contraction \(\varphi:W_1 \rightarrow V\) has a completely contractive extension \(\tilde{\varphi}:W_2 \rightarrow V\). For example, \(B(H)\) is an injective operator space by the celebrated Arveson-Wittstock Hahn-Banach theorem (see Theorem 7.2 of V. I. Paulsen [Completely Bounded Maps and Dilations (Pitman Res. Notes Math. Ser. 146), Longman (1986; Zbl 0614.47006)], or Section 3 of E. G. Effros and Z.-J. Ruan [Pac. J. Math. 132, 243–264 (1988; Zbl 0686.46012)]).
Ruan proved that an operator space \(V\) is injective if and only if there is an injective \(C^*\)-algebra \(A\) and a projection \(p \in A\) such that \(V\) is completely isometrically isomorphic to \(pA(1-p)\); see Theorems 4.3 and 4.5 of Z.-J. Ruan [Trans. Am. Math. Soc. 315, 89–104 (1989; Zbl 0669.46029)].
The authors prove that an operator space that is dual as a Banach space is injective if and only if it is completely isometric and weak* homeomorphic to \(eR(1-e)\) for some injective von Neumann algebra \(R\) and some projection \(e\in R\). Recall that a von Neumann algebra is called injective if it is the image of a projection of norm \(1\) from \(B(H)\).
It is also proved that (isometrically) exact operator spaces are always locally reflexive and that an operator space \(V\) is nuclear if and only if it is locally reflexive and \(V^{**}\) is injective (i.e., semidiscrete). An operator space \(V\) is said to be locally reflexive if the injective operator space tensor product \(F \otimes V^{**}\) coincides with \((F \otimes V)^{**}\) for all finite-dimensional operator spaces \(F\); see E. G. Effros, M. Junge and Z.-J. Ruan [Ann. Math. (2) 151, 59–92 (2000; Zbl 0957.47051)].
The authors, by modifying the operator space matrix norm on a von Neumann algebra, show that there exist operator spaces that are dual Banach spaces but which are not dual operator spaces.

MSC:

46L07 Operator spaces and completely bounded maps
46L08 \(C^*\)-modules
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. J. Archbold and C. J. K. Batty, \(C^*\)-tensor norms and slice maps , J. London Math. Soc. (2) 22 (1980), 127–138. · Zbl 0437.46049 · doi:10.1112/jlms/s2-22.1.127
[2] D. P. Blecher, The Shilov boundary of an operator space and the characterization theorems , J. Funct. Anal. 182 (2001), 280–343. · Zbl 1064.46042 · doi:10.1006/jfan.2000.3734
[3] M. D. Choi and E. G. Effros, Nuclear \(C^*\)-algebras and the approximation property , Amer. J. Math. 100 (1978), 61–79. JSTOR: · Zbl 0397.46054 · doi:10.2307/2373876
[4] –. –. –. –., Nuclear \(C^*\)-algebras and injectivity: The general case , Indiana Univ. Math. J. 26 (1977), 443–446. · Zbl 0378.46052 · doi:10.1512/iumj.1977.26.26034
[5] A. Connes, Classification of injective factors: Cases \(II_1\), \(II_\infty\), \(III_\lambda\), \(\lambda \not = 1\) , Ann. of Math. (2) 104 (1976), 73–115. JSTOR: · Zbl 0343.46042 · doi:10.2307/1971057
[6] J. Dixmier, Les \(C^*\)-algèbres et leurs représentations , Cahiers Sci. 29 , Gauthier- Villars, Paris, 1964. · Zbl 0152.32902
[7] E. G. Effros, Order ideals in a \(C^*\)-algebra and its dual , Duke Math. J. 30 (1963), 391–411. · Zbl 0117.09703 · doi:10.1215/S0012-7094-63-03042-4
[8] E. G. Effros and U. Haagerup, Lifting problems and local reflexivity for \(C^*\)-algebras , Duke Math. J. 52 (1985), 103–128. · Zbl 0613.46047 · doi:10.1215/S0012-7094-85-05207-X
[9] E. G. Effros, M. Junge, and Z.-J. Ruan, Integral mappings and the principle of local reflexivity for noncommutative \(L^1\)-spaces , Ann. of Math. (2) 151 (2000), 59–92. JSTOR: · Zbl 0957.47051 · doi:10.2307/121112
[10] E. G. Effros and E. C. Lance, Tensor products of operator algebras , Adv. Math. 25 (1977), 1–34. · Zbl 0372.46064 · doi:10.1016/0001-8708(77)90085-8
[11] E. G. Effros and Z.-J. Ruan, Representations of operator bimodules and their applications , J. Operator Theory 19 (1988), 137–158. · Zbl 0705.46026
[12] –. –. –. –., Mapping spaces and liftings for operator spaces , Proc. London Math. Soc. (3) 69 (1994), 171–197. · Zbl 0814.47053 · doi:10.1112/plms/s3-69.1.171
[13] ——–, Operator Spaces , London Math. Soc. Monogr. (N.S.) 23 , Oxford Univ. Press, New York, 2000.
[14] L. Ge and D. Hadwin, Ultraproduct for \(C^*\)-algebras ,
[15] D. B. Goodner, Projections in normed linear spaces , Trans. Amer. Math. Soc. 69 (1950), 89–108. JSTOR: · Zbl 0041.23203 · doi:10.2307/1990599
[16] A. Grothendieck, Une caractérisation vectorielle-métrique des espaces \(L^1\) , Canad. J. Math. 7 (1955), 552–561. · Zbl 0065.34503 · doi:10.4153/CJM-1955-060-6
[17] M. Hamana, “Injective envelopes of dynamical systems” in Operator Algebras and Operator Theory (Craiova, Romania, 1989) , Pitman Res. Notes Math. Ser. 271 , Longman Sci. Tech., Harlow, England, 1992, 69–77. · Zbl 0788.46066
[18] –. –. –. –., Triple envelopes and Šilov boundaries of operator spaces , Math. J. Toyama Univ. 22 (1999), 77–93. · Zbl 0948.46045
[19] L. A. Harris, A generalization of \(C^*\)-algebras , Proc. London Math. Soc. (3) 42 (1981), 331–361. · Zbl 0476.46054 · doi:10.1112/plms/s3-42.2.331
[20] M. Hasumi, The extension property of complex Banach spaces , Tôhoku Math. J. (2) 10 (1958), 135–142. · Zbl 0087.10901 · doi:10.2748/tmj/1178244708
[21] M. R. Hestenes, A ternary algebra with applications to matrices and linear transformations , Arch. Rational Mech. Anal. 11 (1962), 138–194. · Zbl 0201.37001 · doi:10.1007/BF00253936
[22] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1: Structure of Topological Groups, Integration Theory, Group Representations , Grundlehren Math. Wiss. 115 , Springer, Berlin, 1963. · Zbl 0115.10603
[23] K. K. Jensen and K. Thomsen, Elements of \(KK\)-Theory , Math. Theory Appl., Birkhäuser, Boston, 1991.
[24] J. L. Kelley, Banach spaces with the extension property , Trans. Amer. Math. Soc. 72 (1952), 323–326. JSTOR: · Zbl 0046.12002 · doi:10.2307/1990758
[25] E. Kirchberg, The Fubini theorem for exact \(C^*\)-algebras , J. Operator Theory 10 (1983), 3–8. · Zbl 0543.46035
[26] –. –. –. –., On nonsemisplit extensions, tensor products and exactness of group \(C^*\)-algebras , Invent. Math. 112 (1993), 449–489. · Zbl 0803.46071 · doi:10.1007/BF01232444
[27] –. –. –. –., On restricted perturbations in inverse images and a description of normalizer algebras in \(C^*\)-algebras , J. Funct. Anal. 129 (1995), 1–34. · Zbl 0828.46052 · doi:10.1006/jfan.1995.1040
[28] –. –. –. –., On subalgebras of the CAR-algebra , J. Funct. Anal. 129 (1995), 35–63. · Zbl 0912.46059 · doi:10.1006/jfan.1995.1041
[29] E. Kirchberg and N. C. Phillips, Embedding of exact \(C^*\)-algebras in the Cuntz algebra \(\mathcalO_2\) , J. Reine Angew. Math. 525 (2000), 17–53. · Zbl 0973.46048 · doi:10.1515/crll.2000.065
[30] E. Kirchberg and S. Wassermann, \(C^*\)-algebras generated by operator systems , J. Funct. Anal. 155 (1998), 324–351. · Zbl 0940.46038 · doi:10.1006/jfan.1997.3226
[31] S.-H. Kye and Z.-J. Ruan, On the local lifting property for operator spaces , J. Funct. Anal. 168 (1999), 355–379. · Zbl 0951.47057 · doi:10.1006/jfan.1999.3475
[32] H. E. Lacey, The Isometric Theory of Classical Banach Spaces , Grundlehren Math. Wiss. 208 , Springer, New York, 1974. · Zbl 0285.46024
[33] C. Lance, On nuclear \(C^*\)-algebras , J. Funct. Anal. 12 (1973), 157–176. · Zbl 0252.46065 · doi:10.1016/0022-1236(73)90021-9
[34] ——–, Hilbert \(C^*\)-Modules: A Toolkit for Operator Algebraists , London Math. Soc. Lecture Note Ser. 210 , Cambridge Univ. Press, Cambridge, 1995. · Zbl 0822.46080
[35] C. Le Merdy, On the duality of operator spaces , Canad. Math. Bull. 38 (1995), 334–346. · Zbl 0838.46046
[36] L. Nachbin, A theorem of the Hahn-Banach type for linear transformations , Trans. Amer. Math. Soc. 68 (1950), 28–46. JSTOR: · Zbl 0035.35402 · doi:10.2307/1990536
[37] M. Nakamura, M. Takesaki, and H. Umegaki, A remark on the expectations of operator algebras , Kōdai Math. Sem. Rep. 12 (1960), 82–90. · Zbl 0102.10802 · doi:10.2996/kmj/1138844264
[38] W. L. Paschke, Inner product modules over \(B^*\)-algebras , Trans. Amer. Math. Soc. 182 (1973), 443–468. JSTOR: · Zbl 0239.46062 · doi:10.2307/1996542
[39] V. I. Paulsen, Completely Bounded Maps and Dilations , Pitman Res. Notes Math. Ser. 146 , Longman Sci. Tech., Harlow, England, 1986. · Zbl 0614.47006
[40] G. K. Pedersen, \(C^*\)-Algebras and Their Automorphism Groups , London Math. Soc. Monogr. 14 , Academic Press, London, 1979. · Zbl 0416.46043
[41] G. Pisier, “Exact operator spaces” in Recent Advances in Operator Algebras (Orléans, France, 1992) , Astérisque 232 , Soc. Math. France, Montrouge, 1995, 159–186. · Zbl 0844.46031
[42] A. G. Robertson and R. R. Smith, Liftings and extensions of maps on \(C^*\)-algebras , J. Operator Theory 21 (1989), 117–131. · Zbl 0699.46041
[43] Z.-J. Ruan, Subspaces of \(C^*\)-algebras , J. Funct. Anal. 76 (1988), 217–230. · Zbl 0646.46055 · doi:10.1016/0022-1236(88)90057-2
[44] –. –. –. –., Injectivity of operator spaces , Trans. Amer. Math. Soc. 315 (1989), 89–104. JSTOR: · Zbl 0669.46029 · doi:10.2307/2001374
[45] S. Sakai, A characterization of \(W^*\)-algebras , Pacific J. Math. 6 (1956), 763–773. · Zbl 0072.12404 · doi:10.2140/pjm.1956.6.763
[46] A. M. Sinclair and R. R. Smith, Hochschild Cohomology of von Neumann Algebras , London Math. Soc. Lecture Notes Ser. 203 , Cambridge Univ. Press, Cambridge, 1995. · Zbl 0826.46050
[47] R. R. Smith, Completely bounded maps between \(C^*\)-algebras , J. London Math. Soc. (2) 27 (1983), 157–166. · Zbl 0527.46052 · doi:10.1112/jlms/s2-27.1.157
[48] –. –. –. –., Finite dimensional injective operator spaces , Proc. Amer. Math. Soc. 128 (2000), 3461–3462. JSTOR: · Zbl 0962.46042 · doi:10.1090/S0002-9939-00-05900-1
[49] Ş. Strătilă, Modular Theory in Operator Algebras , Abacus Press, Tunbridge Wells, England, 1981. · Zbl 0504.46043
[50] J. Tomiyama, Tensor products and projections of norm one in von Neumann algebras , lecture notes, University of Copenhagen, 1970.
[51] H. H. Zettl, Ideals in Hilbert modules and invariants under strong Morita equivalence of \(C^*\)-algebras , Arch. Math. (Basel) 39 (1982), 69–77. · Zbl 0498.46034 · doi:10.1007/BF01899246
[52] –. –. –. –., A characterization of ternary rings of operators , Adv. Math. 48 (1983), 117–143. · Zbl 0517.46049 · doi:10.1016/0001-8708(83)90083-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.