×

Nonradial Hörmander algebras of several variables and convolution operators. (English) Zbl 0992.46020

For a certain type of weight function \(p\) on \(\mathbb{C}^N\), \(N\geq 1\), the Hörmander algebra \(A_p\) consists of all entire functions \(f\) such that, for some \(k\in\mathbb{N}\), \[ |f|_k= \sup_{z\in \mathbb{C}^N}|f(z)|\exp(- kp(z))< \infty. \] In the case of a radial weight \(p\) it is well-known that each principal ideal in \(A_p\) is closed, but this is not true in general in the non-radial case. For general non-radial Hörmander algebras and \(N= 1\), S. Momm [Arch. Math. 58, No. 1, 47-55 (1992; Zbl 0804.46066)] had characterized the closed principal ideals. In the present article, a characterization of the closed principal ideals in non-radia Hörmander algebras of holomorphic functions of several variables is obtained in terms of the behavior of the generator.
Let \({\mathcal E}_{(\omega)}(\mathbb{R}^N)\) denote the space of ultradifferentiable functions of Beurling type associated to a (quasianalytic or non-quasianalytic) weight \(\omega\) on \(\mathbb{R}_+\). Via Fourier-Laplace transform \(F\), the convolution algebra \({\mathcal E}_{(\omega)}'(\mathbb{R}^N)\), endowed with its strong topology, is topologically algebra isomorphic to \(A_p\) for the non-radial weight function \(p\), \(p(z)= \omega(|\text{Re }z|)+ |\text{Im }z|\) for \(z\in \mathbb{C}^N\). And for \(\mu\in{\mathcal E}_{(\omega)}'(\mathbb{R}^N)\) the convolution operator \(T_\mu:{\mathcal E}_{(\omega)}(\mathbb{R}^N)\to{\mathcal E}_{(\omega)}(\mathbb{R}^N)\) is surjective if and only if the principal ideal \(\widehat\mu A_p\) is closed in \(A_p\), where \(\widehat\mu= F(\mu)\). Hence, as a corollary, the authors obtain that \(T_\mu\) is surjective if and only if \(\mu\) is “slowly decreasing for \((\omega)\)”, a result which for non-quasianalytic weight \(\omega\) had already been proved by J. Bonet and A. Galbis [Glasgow Math. J. 38, No. 1, 125-135 (1996; Zbl 0861.46025)].
Next, the authors treat the question when for two weights \(\omega\leq\sigma\) the range of every convolution operator \(T_\mu\) or the range of every ultradifferential operator \(G(D)\) of class \((\omega)\) on \({\mathcal E}_{(\omega)}(\mathbb{R}^N)\) contains \({\mathcal E}_{(\sigma)}(\mathbb{R}^N)\). If \(\omega= o(\sigma)\), the same question is treated for the Roumieu class \({\mathcal E}_{\{\sigma\}}(\mathbb{R}^N)\) instead of \({\mathcal E}_{(\sigma)}(\mathbb{R}^N)\). The limit case when the Roumieu class is replaced by the space of real analytic functions is studied at the end of the article. Bonet and Galbis, in the article quoted above, had shown that, for non-quasianalytic \(\omega\), the range of each convolution operator on \({\mathcal E}_{(\omega)}(\mathbb{R}^N)\) contains the space of real analytic functions. Using results of R. Sigurdsson [Math. Scand. 59, 235-304 (1986; Zbl 0619.32003)], the authors now present a quasianalytic weight \(\sigma\) and an ultradistribution \(\mu\in{\mathcal E}_{(\sigma)}'(\mathbb{R})\) such that the range of \(T_\mu:{\mathcal E}_{(\sigma)}(\mathbb{R})\to {\mathcal E}_{(\sigma)}(\mathbb{R})\) does not contain the space of real analytic functions.

MSC:

46E25 Rings and algebras of continuous, differentiable or analytic functions
46E10 Topological linear spaces of continuous, differentiable or analytic functions
46F05 Topological linear spaces of test functions, distributions and ultradistributions
32A38 Algebras of holomorphic functions of several complex variables
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
46F10 Operations with distributions and generalized functions
35R50 PDEs of infinite order
32A15 Entire functions of several complex variables
46A11 Spaces determined by compactness or summability properties (nuclear spaces, Schwartz spaces, Montel spaces, etc.)
46A13 Spaces defined by inductive or projective limits (LB, LF, etc.)
46A22 Theorems of Hahn-Banach type; extension and lifting of functionals and operators
46H10 Ideals and subalgebras
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] V. S. Azarin, Asymptotic behavior of subharmonic functions of finite order, Mat. Sb. (N.S.) 108(150) (1979), no. 2, 147 – 167, 303 (Russian).
[2] C. A. Berenstein and B. A. Taylor, Interpolation problems in \?\(^{n}\) with applications to harmonic analysis, J. Analyse Math. 38 (1980), 188 – 254. · Zbl 0464.42003
[3] Anna Szynal and Jan Szynal, On some problems concerning subordination and majorization of functions, Demonstratio Math. 11 (1978), no. 2, 331 – 350. · Zbl 0392.30013
[4] Carlo Bardaro and Gianluca Vinti, Modular estimates for linear integral operators in Musielak-Orlicz spaces on groups, Atti Sem. Mat. Fis. Univ. Modena 43 (1995), no. 2, 483 – 490. · Zbl 0851.46020
[5] J. Bonet, A. Galbis, and R. Meise, On the range of convolution operators on non-quasianalytic ultradifferentiable functions, Studia Math. 126 (1997), no. 2, 171 – 198. · Zbl 0918.46039
[6] R. W. Braun, R. Meise, and B. A. Taylor, Ultradifferentiable functions and Fourier analysis, Results Math. 17 (1990), no. 3-4, 206 – 237. · Zbl 0735.46022 · doi:10.1007/BF03322459
[7] L. Ehrenpreis, Solution of some problems of division. IV. Invertible and elliptic operators, Amer. J. Math. 82 (1960), 522 – 588. · Zbl 0098.08401 · doi:10.2307/2372971
[8] Lars Hörmander, On the range of convolution operators, Ann. of Math. (2) 76 (1962), 148 – 170. · Zbl 0109.08501 · doi:10.2307/1970269
[9] Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. · Zbl 0685.32001
[10] -, The analysis of linear partial differential operators I. Springer, 1983.
[11] -, The analysis of linear partial differential operators II. Springer Verlag, 1983.
[12] L. Hörmander, R. Sigurdssson, Growth properties of plurisubharmonic functions related to Fourier-Laplace transforms. Lund University, 1993.
[13] James J. Kelleher and B. A. Taylor, Closed ideals in locally convex algebras of analytic functions, J. Reine Angew. Math. 255 (1972), 190 – 209. · Zbl 0237.46052
[14] Michael Langenbruch, Continuous linear right inverses for convolution operators in spaces of real analytic functions, Studia Math. 110 (1994), no. 1, 65 – 82. · Zbl 0824.35147
[15] B. Ja. Levin, Distribution of zeros of entire functions, Revised edition, Translations of Mathematical Monographs, vol. 5, American Mathematical Society, Providence, R.I., 1980. Translated from the Russian by R. P. Boas, J. M. Danskin, F. M. Goodspeed, J. Korevaar, A. L. Shields and H. P. Thielman.
[16] Pierre Lelong and Lawrence Gruman, Entire functions of several complex variables, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 282, Springer-Verlag, Berlin, 1986. · Zbl 0583.32001
[17] A. Martineau, Équations différentielles d’ordre infini. Bull. Soc. Math. France 95 (1967), 109-154. · Zbl 0167.44202
[18] R. Meise, B. A. Taylor, and D. Vogt, Equivalence of slowly decreasing conditions and local Fourier expansions, Indiana Univ. Math. J. 36 (1987), no. 4, 729 – 756. · Zbl 0637.46037 · doi:10.1512/iumj.1987.36.36042
[19] Reinhold Meise, B. Alan Taylor, and Dietmar Vogt, Continuous linear right inverses for partial differential operators on non-quasianalytic classes and on ultradistributions, Math. Nachr. 180 (1996), 213 – 242. · Zbl 0858.46030 · doi:10.1002/mana.3211800110
[20] Reinhold Meise and Dietmar Vogt, Introduction to functional analysis, Oxford Graduate Texts in Mathematics, vol. 2, The Clarendon Press, Oxford University Press, New York, 1997. Translated from the German by M. S. Ramanujan and revised by the authors. · Zbl 0924.46002
[21] T. Meyer, Die Fourier-Laplace-Transformation quasianalytischer Funktionale und ihre Anwendung auf Faltungsoperatoren. Diplomarbeit, Düsseldorf, 1989.
[22] Thomas Meyer, Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type, Studia Math. 125 (1997), no. 2, 101 – 129. · Zbl 0897.46023
[23] Siegfried Momm, Closed principal ideals in nonradial Hörmander algebras, Arch. Math. (Basel) 58 (1992), no. 1, 47 – 55. · Zbl 0804.46066 · doi:10.1007/BF01198642
[24] Siegfried Momm, Division problems in spaces of entire functions of finite order, Functional analysis (Essen, 1991) Lecture Notes in Pure and Appl. Math., vol. 150, Dekker, New York, 1994, pp. 435 – 457. · Zbl 0803.46025
[25] Siegfried Momm, A Phragmén-Lindelöf theorem for plurisubharmonic functions on cones in \?^{\?}, Indiana Univ. Math. J. 41 (1992), no. 3, 861 – 867. · Zbl 0765.32010 · doi:10.1512/iumj.1992.41.41046
[26] Siegfried Momm, A division problem in the space of entire functions of exponential type, Ark. Mat. 32 (1994), no. 1, 213 – 236. · Zbl 0807.32001 · doi:10.1007/BF02559529
[27] T. Rösner, Surjektivität partieller Differentialoperatoren auf quasianalytischen Roumieu-Klassen. Dissertation. Düsseldorf 1997. · Zbl 0886.35041
[28] Lee A. Rubel and B. A. Taylor, A Fourier series method for meromorphic and entire functions, Bull. Soc. Math. France 96 (1968), 53 – 96. · Zbl 0157.39603
[29] Lee A. Rubel, Entire and meromorphic functions, Universitext, Springer-Verlag, New York, 1996. With the assistance of James E. Colliander. · Zbl 0859.30001
[30] Ragnar SigurÄ’sson, Growth properties of analytic and plurisubharmonic functions of finite order, Math. Scand. 59 (1986), no. 2, 235 – 304. · Zbl 0619.32003 · doi:10.7146/math.scand.a-12164
[31] Ragnar SigurÄ’sson, Convolution equations in domains of \?\(^{n}\), Ark. Mat. 29 (1991), no. 2, 285 – 305. · Zbl 0794.32004 · doi:10.1007/BF02384343
[32] Dietmar Vogt, Topics on projective spectra of (LB)-spaces, Advances in the theory of Fréchet spaces (Istanbul, 1988) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 287, Kluwer Acad. Publ., Dordrecht, 1989, pp. 11 – 27. · Zbl 0711.46006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.