×

Fractional Poisson equations and ergodic theorems for fractional coboundaries. (English) Zbl 0988.47009

The main topic of the paper is obtaining speeds of convergence in ergodic theory and probability from assumptions that link the integrable function \(f\) to the transformation under consideration. The paper is based on earlier works C. Kipnis and S. R. Varadhan [Commun. Math. Phys. 104, 1-19 (1986; Zbl 0588.60058)], Y. Derriennic and M. Lin [C. R. Acad. Sci., Paris, Sér. I 323, No. 9, 1053-1057 (1996; Zbl 0869.60019)], A. Brunel [Ann. Inst. Henri Poincaré. n. Ser., Sect. B 9, 327-343 (1974; Zbl 0272.47007)].
For transformation \(T\) of the space \(X\) the elements of \((I-T)X\) are called coboundaries. The characterization \(y\) is a coboundary if and only if \(\sup_n\|\sum_{k=0}^{n-1} T^ky\|<\infty\) is a characterization by the rate of convergence of 1/n in the mean ergodic theorem. For a coboundary \(y\), the Poisson equation \(y=(I-T)x\) can be solved by using the averages of the sequence \(\{\sum_{k=0}^{n-1} T^k y\}\) [see M. Lin and R. Sine, J. Oper. Theory 10, 153-166 (1983; Zbl 0553.47006)].
In the paper, the operator \((I-T)^{\alpha}\) for any \(\alpha\in(0,1)\) is introduced, where \(T\) is a contraction on a Banach space. The elements of the image of \((I-T)^{\alpha}\) are called \(\alpha\)-fractional coboundaries. For \(T\) mean ergodic a characterization of the elements of the image of \((I-T)^{\alpha}\) and a series solution of the fractional Poisson equation \(y=(I-T)^{\alpha}x\) are obtained. The problem for a contraction in a general Banach space is then considered in terms of the norm or the weak topology of the space. Then probability preserving transformations and general Dunford-Schwartz operators are treated from the point of view of the a.e. convergence. Special results for normal contractions in a Hilbert space are given in the last section of the paper.

MSC:

47A35 Ergodic theory of linear operators
28D05 Measure-preserving transformations
37A30 Ergodic theorems, spectral theory, Markov operators
47A60 Functional calculus for linear operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] [A] I. Assani,Wiener-Wintner dynamical systems, preprint, 1998. · Zbl 1128.37300
[2] [ANi] I. Assani and K. Nicolaou,Properties of Wiener-Wintner dynamical systems, preprint, 1999. · Zbl 0994.37004
[3] [BoI] A. N. Borodin and I. A. Ibragimov,Limit Theorems for Functionals of Random Walks, Proceedings of the Steklov Institute of Mathematics195 (1994); English translation: American Mathematical Society, Providence, RI, 1995. · Zbl 0840.60002
[4] Broise, M.; Déniel, Y.; Derriennic, Y., Réarrangement, inégalités maximales et théorèmes ergodiques fractionnaires, Annales de l’Institut Fourier, 39, 689-714 (1989) · Zbl 0673.60055
[5] Brunel, A., Théorème ergodique ponctuel pour un semigroupe finiment engendré de contractions de L^1, Annales de l’Institut Henri Poincaré. Probabilités et Statistiques, 9, 327-343 (1973) · Zbl 0272.47007
[6] Butzer, P.; Westphal, U., The mean ergodic theorem and saturation, Indiana University Mathematics Journal, 20, 1163-1174 (1971) · Zbl 0206.43402
[7] Campbell, J., Spectral analysis of the ergodic Hilbert transform, Indiana University Mathematics Journal, 35, 379-390 (1986) · Zbl 0575.47023
[8] Çömez, D.; Lin, M.; Bellow, A.; Jones, R., Mean ergodicity of L_1 contractions and pointwise ergodic theorems, Almost Everywhere Convergence II, 113-126 (1991), Boston: Academic Press, Boston · Zbl 0759.47004
[9] Del Junco, A.; Rosenblatt, J., Counterexamples in ergodic theory and number theory, Mathematische Annalen, 245, 185-197 (1979) · Zbl 0398.28021
[10] Déniel, Y., On the a.s. Cesàro-α convergence for stationary or orthogonal random variables, Journal of Theoretical Probability, 2, 475-485 (1989) · Zbl 0684.60014
[11] Derriennic, Y.; Lin, M., Sur le théorème limite central de Kipnis et Varadhan pour les chaînes réversibles ou normales, Comptes Rendus de l’Académie des Sciences, Paris, Série I, 323, 1053-1057 (1996) · Zbl 0869.60019
[12] Dunford, N.; Schwartz, J., Linear Operators I (1958), New York: Interscience, New York · Zbl 0084.10402
[13] Foguel, S. R., The Ergodic Theory of Markov Processes (1969), New York: Van Nostrand, New York · Zbl 0282.60037
[14] Gaposhkin, V., Convergence of a series related to stationary processes, Izvestia Matematika, 39, 1366-1392 (1975) · Zbl 0326.60038
[15] Gaposhkin, V., On the dependence of the convergence rate in the SLLN for stationary processes on the rate of decay of the correlation function, Theory of Probability and its Applications, 26, 706-720 (1981) · Zbl 0488.60040
[16] Gaposhkin, V., Spectral criteria for existence of generalized ergodic transforms, Theory of Probability and its Applications, 41, 247-264 (1996) · Zbl 0881.60038
[17] Gordin, M.; Lifŝic, B., A central limit theorem for Markov processes, Soviet Mathematics Doklady, 19, 392-394 (1978) · Zbl 0395.60057
[18] Gordin, M.; Lifŝic, B., A remark about a Markov process with normal transition operator, 147-148 (1981), Vilnius: Akademiya Nauk Litovsk, Vilnius
[19] Halmos, P. R., A non-homogeneous ergodic theorem, Transactions of the American Mathematical Society, 66, 284-288 (1949) · Zbl 0036.20502
[20] Horowitz, S., Pointwise convergence of the iterates of a Harris-recurrent Markov operator, Israel Journal of Mathematics, 33, 177-180 (1979) · Zbl 0435.60068
[21] Kachurovskii, A. G., The rate of convergence in ergodic theorems, Russian Mathematical Surveys, 51, 653-703 (1996) · Zbl 0880.60024
[22] Kipnis, C.; Varadhan, S. R., Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Communications in Mathematical Physics, 104, 1-19 (1986) · Zbl 0588.60058
[23] Krengel, U., Ergodic Theorems (1985), Berlin: de Gruyter, Berlin · Zbl 0575.28009
[24] Lacey, M., On central limit theorems, modules of continuity and diophantine type of irrational rotations, Journal d’Analyse Mathématique, 61, 47-59 (1993) · Zbl 0790.60027
[25] Lamperti, J., Probability (1966), New York: Benjamin, New York · Zbl 0147.15502
[26] Leonov, V. P., On the dispersion of time means of a stationary stochastic process, Teoriya Veroyatnostei i Primeneniya, 6, 93-101 (1961) · Zbl 0128.12701
[27] Lin, M., On the uniform ergodic theorem, Proceedings of the American Mathematical Society, 43, 337-340 (1974) · Zbl 0252.47004
[28] Lin, M.; Sine, R., Ergodic theory and the functional equation (I−T)x=y, Journal of Operator Theory, 10, 153-166 (1983) · Zbl 0553.47006
[29] Neveu, J., Mathematical Foundations of the Calculus of Probability (1965), San Francisco: Holden Day, San Francisco · Zbl 0137.11301
[30] Petersen, K., Ergodic Theory (1983), Cambridge: Cambridge University Press, Cambridge · Zbl 0507.28010
[31] Riesz, F.; Sz-Nagy, B., Leçons d’analyse fonctionnelle (1955), Budapest: Akadémiai Kiadó, Budapest · Zbl 0064.35404
[32] Stein, E. M., On the maximal ergodic theorem, Proceedings of the National Academy of Sciences of the United States of America, 47, 1894-1897 (1961) · Zbl 0182.47102
[33] Yosida, K., Functional Analysis (1971), Berlin: Springer, Berlin · Zbl 0217.16001
[34] Zygmund, A., Trigonometric Series I-II (1968), Cambridge: Cambridge University Press, Cambridge · Zbl 0628.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.