×

Comparing heat operators through local isometries or fibrations. (English) Zbl 0968.58021

Let \((M,g)\) be any connected Riemannian manifold of finite dimension \(n\). Let us denote by \(\Delta_M= \Delta_{(M,g)}\) the Laplace-Beltrami operator acting on functions and let us consider the heat equation: \[ \left( \Delta_M+ {\partial\over \partial t}\right) u=0, \] with Dirichlet or Neumann condition on the boundary if \(M\) has a nonempty boundary \(\partial M\). The corresponding heat kernel will be denoted by \(p_M(t,x,y)\) when the boundary is empty, \(p^D_M (t,x,y)\) or \(p^N_M (t,x,y)\) resp. when the boundary condition is Dirichlet’s or Neumann’s one. For a noncompact manifold, the author considers \(p_M\) to be the unique minimal heat kernel, i.e. the limit of the Dirichlet heat kernels of regular compact domains exhausting \(M\); if \(M\) is complete and if its Ricci curvature is bounded from below, then \(p_M\) is the unique heat kernel on \(M\). If \(M\) is compact, the spectrum of \(\Delta_M\) is a discrete sequence \(\{ \lambda_i(M)\}_{i=0,1,2, \dots}\) (each eigenvalue is repeated according to its finite multiplicity); in this case the author also considers the trace \(Z_M(t)\) of the heat operator \(e^{-\Delta_Mt}\) (with positive \(t)\): \[ Z_M(t)= \sum^{+ \infty}_{i=0} e^{-\lambda_i (M)t} \] and similar expressions for \(Z^D_M(t)\) and \(Z^N_M(t)\).
Given a mapping \(f:(M',g') \to(M,g)\), the aim of the author is to compare the heat kernels of the two manifolds, under suitable assumptions for \(f\).
If \(f\) is a fibration of compact manifolds with typical fiber \(F\), the so-called Kato’s inequality compares the trace of the heat operator on \((M',g')\) with the one of the trivial fibration with the same typical fiber \(F\). If \(f\) is a Riemannian submersion of compact boundaryless manifolds, whose fibers are totally geodesic submanifolds of \(M'\), then \[ Z_{M'} (t)\leq Z_{M \times F}(t)= Z_m(t) \cdot Z_F(t); \] in particular, if \(f\) is a regular \(\ell\)-sheeted Riemannian covering, one obtains: \[ Z_{M'}(t)\leq \ell\cdot Z_M(t). \] The author generalizes and improves Kato’s inequality. A comparison with the heat kernel of a suitable space-form gives, as a consequence, an analogue of Kato’s inequality for non compact manifolds, which improves the classical inequality when the manifolds are compact. The author gets another generalization for local isometries, which are no more supposed to be covering maps. Last he considers Riemannian submersions with minimal fibers.

MSC:

58J35 Heat and other parabolic equation methods for PDEs on manifolds
35P20 Asymptotic distributions of eigenvalues in context of PDEs
53C20 Global Riemannian geometry, including pinching
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML Link

References:

[1] BÉRARD (P.) , GALLOT (S.) . - Inégalités isopérimétriques pour l’équation de la chaleur et applications à l’estimation de quelques invariants géométriques , in Séminaire Goulaouic-Meyer-Schwarz 1983 - 1984 , exposé n^\circ XV, École Polytechnique, Palaiseau, 1984 . Numdam | Zbl 0542.53025 · Zbl 0542.53025
[2] BÉRARD BERGERY (L.) , BOURGUIGNON (J.P.) . - Laplacians and Riemannian submersions with totally geodesic fibers , Illinois J. Math., t. 26, n^\circ 2, 1982 , p. 181-200. Article | MR 84m:58153 | Zbl 0483.58021 · Zbl 0483.58021
[3] BERGER (M.) , GAUDUCHON (P.) , MAZET (E.) . - Le spectre d’une variété riemannienne, Lecture Notes in Math. 194. - Springer Verlag, Berlin-Heidelberg-New York, 1971 . MR 43 #8025 | Zbl 0223.53034 · Zbl 0223.53034
[4] BESSON (G.) . - A Kato type inequality for Riemannian submersions with totally geodesic fibers , Ann. Glob. Analysis and Geometry, t. 4, n^\circ 3, 1986 , p. 273-289. MR 89b:58215 | Zbl 0631.53035 · Zbl 0631.53035 · doi:10.1007/BF00128049
[5] BESSON (G.) . - On symmetrization , Contemporary Mathematics, t. 51, 1986 , p. 9-21. MR 87m:58161 | Zbl 0589.53049 · Zbl 0589.53049
[6] BISHOP (R.L.) , CRITTENDEN (R.J.) . - Geometry of manifolds . - Academic Press, New York-London, 1964 . MR 29 #6401 | Zbl 0132.16003 · Zbl 0132.16003
[7] BORDONI (M.) . - Spectral estimates for Schrödinger and Dirac-type operators on Riemannian manifolds , Math. Ann., t. 298, 1994 , p. 693-718. MR 95i:58179 | Zbl 0791.58094 · Zbl 0791.58094 · doi:10.1007/BF01459757
[8] BURAGO (Yu.D.) , ZALGALLER (V.A.) . - Geometric Inequalities, Grundlehren der math. Wiss . 285. - Springer Verlag, 1988 . Zbl 0633.53002 · Zbl 0633.53002
[9] CHAVEL (I.) . - Eigenvalues in Riemannian Geometry . - Academic Press, New York, 1984 . MR 86g:58140 | Zbl 0551.53001 · Zbl 0551.53001
[10] CHEEGER (J.) , YAU (S.T.) . - A lower bound for the heat kernel , Comm. Pure Applied Math., t. 34, 1981 , p. 465-480. MR 82i:58065 | Zbl 0481.35003 · Zbl 0481.35003 · doi:10.1002/cpa.3160340404
[11] COURTOIS (G.) . - Estimations du noyau de la chaleur et du noyau de Green d’une variété riemannienne: applications aux variétés privées d’un \?-tube , C.R. Acad. Sci. Paris, t. 303, 1986 , p. 135-138. MR 87h:58220 | Zbl 0588.53030 · Zbl 0588.53030
[12] COURTOIS (G.) . - Spectre des variétés privées d’un \?-tube , Prépublication Institut Fourier (Grenoble), t. 61, 1986 .
[13] COURTOIS (G.) . - Spectrum of manifolds with holes , J. Funct. Anal., t. 134, 1995 , p. 194-221. MR 97b:58142 | Zbl 0847.58076 · Zbl 0847.58076 · doi:10.1006/jfan.1995.1142
[14] DAVIES (E.B.) . - Heat kernel bounds, conservation of probability and the Feller property , J. Analyse Math., t. 58, 1992 , p. 99-119. MR 94e:58136 | Zbl 0808.58041 · Zbl 0808.58041 · doi:10.1007/BF02790359
[15] DEBIARD (A.) , GAVEAU (B.) , MAZET (E.) . - Théorèmes de comparaison en géométrie riemannienne , C.R. Acad. Sci. Paris, t. 281, 1975 , p. 455-458. MR 55 #4294 | Zbl 0327.58014 · Zbl 0327.58014
[16] GAFFNEY (M.P.) . - The conservation property of the heat equation on Riemannian manifolds , Comm. Pure Appl. Math., t. 12, 1959 , p. 1-11. MR 21 #892 | Zbl 0102.09202 · Zbl 0102.09202 · doi:10.1002/cpa.3160120102
[17] GALLOT (S.) . - Inégalités isopérimétriques et analytiques sur les variétés riemanniennes , Astérisque 163-164, 1988 , p. 31-91. MR 90f:58173 | Zbl 0674.53001 · Zbl 0674.53001
[18] GALLOT (S.) . - Isoperimetric inequalities based on integral norms of Ricci curvature , Astérisque 157-158, 1988 , p. 191-216. MR 90a:58179 | Zbl 0665.53041 · Zbl 0665.53041
[19] GALLOT (S.) , HULIN (D.) , LAFONTAINE (J.) . - Riemannian Geometry . - Universitext, Springer Verlag, New York, 1987 . MR 88k:53001 | Zbl 0636.53001 · Zbl 0636.53001
[20] GRIGOR’YAN (A.) . - On stochastically complete manifolds , (in Russian) Dokl. Akad. Nauk. SSSR, t. 290, n^\circ 3, 1986 , p. 534-537; English translation in Soviet. Math. Dokl., t. 34, n^\circ 2, 1987 , p. 310-313. MR 88a:58209 | Zbl 0632.58041 · Zbl 0632.58041
[21] GRIGOR’YAN (A.) . - Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds , Preprint, 1997 .
[22] HESS (H.) , SCHRADER (R.) , UHLENBROCK (D.A.) . - Kato’s inequality and the spectral distribution of Laplacians on compact Riemannian manifolds , J. Diff. Geom., t. 15, 1980 , p. 27-38. MR 82g:58090 | Zbl 0442.58032 · Zbl 0442.58032
[23] HSU (P.) . - Heat semigroup on a complete Riemannian manifold , Ann. Prob., t. 17, 1989 , p. 1248-1254. Article | MR 90j:58158 | Zbl 0694.58043 · Zbl 0694.58043 · doi:10.1214/aop/1176991267
[24] ICHIHARA (K.) . - Curvature, geodesics and the Brownian motion on a Riemannian manifold, II . Explosion properties, Nagoya Math. J., t. 87, 1982 , p. 115-125. Article | MR 84m:58166b | Zbl 0514.58039 · Zbl 0514.58039
[25] KARP (P.) , LI (P.) . - The heat equation on complete Riemannian manifolds , unpublished.
[26] SAVO (A.) . - A mean-value lemma and applications to heat diffusion , Prépublication Institut Fourier (Grenoble), t. 327, 1996 . · Zbl 0872.58064
[27] SPANIER (E.H.) . - Algebraic Topology . - McGraw-Hill, New York, 1966 . MR 35 #1007 | Zbl 0145.43303 · Zbl 0145.43303
[28] STURM (K.-T.) . - Analysis on local Dirichlet spaces I. Recurrence, conservativeness and Lp-Liouville properties , J. reine angew. Math., t. 456, 1994 , p. 173-196. MR 95i:31003 | Zbl 0806.53041 · Zbl 0806.53041 · doi:10.1515/crll.1994.456.173
[29] TAKEDA (M.) . - On a martingale method for symmetric diffusion process and its applications , Osaka J. Math., t. 26, 1989 , p. 605-623. MR 91d:60193 | Zbl 0717.60090 · Zbl 0717.60090
[30] TISK (J.) . - Eigenvalues estimates with applications to minimal surfaces , Pacific J. Math., t. 128, 1987 , p. 361-366. Article | MR 88i:53102 | Zbl 0594.58018 · Zbl 0594.58018 · doi:10.2140/pjm.1987.128.361
[31] YAU (S.T.) . - Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry , Indiana Math. J., t. 25, 1976 , p. 659-670. MR 54 #5502 | Zbl 0335.53041 · Zbl 0335.53041 · doi:10.1512/iumj.1976.25.25051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.