×

Hilbert-Kunz multiplicity and an inequality between multiplicity and colength. (English) Zbl 0964.13008

Let \((A,m)\) be a local ring of characteristic a prime number \(p>0\). The Hilbert-Kunz multiplicity of an \(m\)-primary ideal \(I\) is defined by the following limit: \(e_{HK}(I): =\lim_{e\to +\infty} {l_A(A/I^{[p^e] })\over p^{de}}\), where \(I^{[p^e]}\) is the ideal generated by all the \(p^e\)-th powers of the elements of \(I\). The main point of this paper consists of the proof that if \(A\) is an unmixed local ring of characteristic \(p>0\) with \(e_{HK}(I)=1\) then it is regular.
The authors conjecture the following: Let \((A,m)\) be an unmixed local ring of characteristic a prime number \(p>0\), then:
1. For every parameter ideal \(Q\) of \(A\), \(e(Q)\geq l_A(A/Q^*)\), where \(Q^*\) is the tight closure of \(Q\) and \(e(Q)\) is the usual multiplicity;
2. If \(e(Q)=l_A (A/Q^*)\) for some parameter ideal \(Q\) of \(A\) then \(A\) is Cohen-Macaulay and \(F\)-rational.
The authors investigate this conjecture with respect to some examples.

MSC:

13A35 Characteristic \(p\) methods (Frobenius endomorphism) and reduction to characteristic \(p\); tight closure
13H15 Multiplicity theory and related topics
13B22 Integral closure of commutative rings and ideals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aoyama, Y.; Goto, S., On the endomorphism ring of the canonical module, J. Math. Kyoto Univ., 25, 21-30 (1985) · Zbl 0582.13009
[2] Artin, M., On isolated rational double points of surfaces, Amer. J. Math., 88, 129-136 (1996) · Zbl 0142.18602
[3] Artin, M., (Baily; Shioda, Coverings of rational double points in characteristic \(p\): Complex Analysis and Algebraic Geometry (1977), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 11-22
[4] Buchweitz, R. O.; Chen, Q., Hilbert-Kunz Functions of Cubic Curves and Surfaces, J. Algebra, 197, 246-267 (1997) · Zbl 0898.13009
[6] Conca, A., Hilbert-Kunz functions of monomials and binomial hypersurfaces, Manuscripta Math., 90, 287-300 (1996) · Zbl 0882.13019
[7] Dutta, S. P., Frobenius and multiplicities, J. Algebra, 85, 424-448 (1983) · Zbl 0527.13014
[8] Flenner, H., Die Sätze von Bertini für lokale Ringe, Math. Ann., 229, 97-111 (1977) · Zbl 0398.13013
[9] Fedder, R.; Watanabe, K.-i., A characterization of \(F\)-regularity in terms of \(F\)-purity, Commutative Algebra, (1989). Commutative Algebra, (1989), Math. Sci. Research Inst. Publ. (1989), Springer-Verlag: Springer-Verlag New York-Berlin-Heidelberg, p. 227-245 · Zbl 0738.13004
[10] Goto, S., On the associated graded rings of parameter ideals in Buchsbaum rings, J. Algebra, 85, 490-534 (1983) · Zbl 0529.13010
[12] Grothendieck, A., Chap. IV, Eléments de Géometrie Algébrique (1965), Publ. Math. I.H.E.S · Zbl 0135.39701
[13] Han, C.; Monsky, P., Some surprising Hilbert-Kunz functions, Math. Z., 214, 119-135 (1993) · Zbl 0788.13008
[14] Hochster, M.; Huneke, C., Tight Closure, invariant theory, and Briançon-Skoda theorem, J. Amer. Math. Soc., 3, 31-116 (1990) · Zbl 0701.13002
[15] Huneke, C., Tight Closure and Its Applications. Tight Closure and Its Applications, C.B.M.S. Regional Conf. Ser. in Math., 88 (1996), American Mathematical Society · Zbl 0930.13004
[16] Kunz, E., Characterizations of regular local rings of characteristic \(p\), Amer. J. Math., 41, 772-784 (1969) · Zbl 0188.33702
[17] Kunz, E., On Noetherian rings of characteristic \(p\), Amer. J. Math., 88, 999-1013 (1976) · Zbl 0341.13009
[18] Matsumura, H., Commutative Ring Theory (1986), Cambridge University Press: Cambridge University Press Cambridge
[19] Monsky, P., The Hilbert-Kunz function, Math. Ann., 263, 43-49 (1983) · Zbl 0509.13023
[20] Nagata, M., Local Rings (1962), Interscience: Interscience New York · Zbl 0123.03402
[21] Rees, D., A note on analytically unramified local rings, J. London Math. Soc., 36, 24-28 (1961) · Zbl 0115.26202
[22] Seibert, G., The Hilbert-Kunz function of rings of finite Cohen-Macaulay type, Arch. Math. (Basel), 69, 286-296 (1997) · Zbl 0899.13003
[23] Schenzel, P., Dualizing complexes and system of parameters, J. Algebra, 58, 495-501 (1979) · Zbl 0417.13013
[24] Schenzel, P., Standard system of parameters and their blowing-up rings, J. Reine Angew. Math., 344, 201-220 (1983) · Zbl 0497.13012
[25] Smith, K., \(F\)-rational rings have rational singularities, Amer. J. Math., 119, 159-180 (1997) · Zbl 0910.13004
[26] Stückrad, J.; Vogel, W., Buchsbaum Rings and Applications (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0606.13018
[27] Tomari, M.; Watanabe, K.-i., Filtered rings, filtered blowing-ups and normal two-dimensional singularities with “star-shaped” resolution, Publ. Res. Inst. Math. Sci., 25, 681-740 (1989) · Zbl 0725.13003
[28] Tomari, M.; Watanabe, K.-i., Normal \(Z_r\)-graded rings and normal cyclic covers, Manuscripta Math., 76, 325-340 (1992) · Zbl 0780.13001
[29] Yamagishi, K.-i., Idealizations of maximal Buchsbaum modules over a Buchsbaum ring, Math. Proc. Camb. Phil. Soc., 104, 451-478 (1988) · Zbl 0669.13004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.