×

Sobolev-type classes of functions with values in a metric space. (English. Russian original) Zbl 0944.46024

Sib. Math. J. 38, No. 3, 567-583 (1997); translation from Sib. Mat. Zh. 38, No. 3, 657-675 (1997).
The aim of the article is to define and study an analogue of Sobolev spaces \(W^1_p\) for functions with values in a metric space. Let \(\Omega\) be a domain in \(\mathbb R^n\) and let \(X\) be a complete separable metric space with metric \(d\). For a function \(f\:\Omega\to X\) and a point \(z\in X\), put \(f_z(t)=d[f(t),z]\). The author defines the Sobolev space \(W^1_p(\Omega,X) \) as the class of functions \(f\:\Omega\to X\) such that
1) the real-valued function \(f_z\) belongs to \(W^1_p(\Omega)\) for all \(z\in X\);
2) there exists a real-valued function \(w\in L_p(\Omega)\) such that \(|\nabla f_z(x)|\leq w(x)\) for almost all \(x\in\Omega\) and all \(z\in X\).
The \(L^1_p\)-norm for mappings of class \(W^1_p(\Omega,X)\) is also defined and its continuity is established. The author shows that \(W^1_p(\Omega,X)\) is a complete space and proves theorems analogous to the Sobolev embedding theorems.
It should be noted that different approaches to the definitions of Sobolev-type spaces were considered by N. J. Korevaar and R. M. Schoen in [Commun. Anal. Geom. 1, 561-659 (1993; Zbl 0862.58004)], by L. Ambrosio in [Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 17, 439-478 (1990; Zbl 0724.49027)], by M. Biroli and U. Mosco in [Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX Ser., Rend. Lincei, Mat. Appl. 6, No.1, 37-44 (1995; Zbl 0837.31006)], and by P. Hajłasz in [Potential Anal. 5, No. 4, 403-415 (1996; Zbl 0859.46022)].

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. L. Sobolev, ”On a certain boundary value problem for polyharmonic equations,” Mat. Sb.,2, 467–500 (1937).
[2] S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics [in Russian], Nauka, Moscow (1988). · Zbl 0662.46001
[3] O. V. Besov, V. P. Il’in, and C. M. Nikol’skiî, Integral Representations and Embedding Theorems [in Russian], Nauka, Moscow (1975).
[4] V. G. Maz’ya, Sobolev Spaces [in Russian], Leningrad Univ., Leningrad (1985).
[5] H. Triebel, Interpolation Theory. Function Spaces. Differential Operators, VEB Deutsch. Verlag Wissensch., Berlin (1978).
[6] V. M. Gol’dshtein and Yu. G. Reshetnyak, Quasiconformal Mappings and Sobolev Spaces, Kluwer, Dordrecht, Boston, and London (1990). · Zbl 0687.30001
[7] N. J. Korevaar and R. M. Schoen, ”Sobolev spaces and harmonic maps for metric space targets,” Comm. Anal. Geom.,1, No. 4, 1–99 (1993). · Zbl 0862.58004
[8] L. Ambrosio, ”Metric space valued functions of bounded variation,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),17, No. 3, 439–478 (1990). · Zbl 0724.49027
[9] A. D. Alexandrov, ”On a generalization of Riemannian geometry,” in: Selected Works. Part I, Gordon and Breach Publishers, Amsterdam etc., 1996, pp. 187–249.
[10] P. Hajłasz, ”Sobolev spaces on an arbitrary metric space,” Potential Anal.,5, No. 4, 403–415 (1996). · Zbl 0859.46022
[11] M. Biroli and U. Mosco, ”Sobolev and isoperimetric inequalities for Dirichlet forms in homogeneous spaces,” Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.,9, No. 6, 37–44 (1995). · Zbl 0837.31006
[12] L. V. Kantorovich, B. Z. Vulikh, and A. G. Pinsker, Functional Analysis in Partially Ordered Spaces [in Russian], Gostekhizdat, Moscow and Leningrad (1950). · Zbl 0037.07201
[13] Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, Amer. Math. Soc., Providence (1989). · Zbl 0667.30018
[14] Yu. G. Reshetnyak, ”General theorems on semicontinuity and convergence with a functional,” Sibirsk. Mat. Zh.,8, No. 3, 1051–1069 (1967).
[15] Yu. G. Reshetnyak, ”Generalized derivatives and differentiability almost everywhere,” Dokl. Akad. Nauk SSSR,170, No. 6, 1273–1275 (1966). · Zbl 0186.46802
[16] V. P. Il’in, ”On an embedding theorem for a limit exponent,” Dokl. Akad. Nauk SSSR,96, No. 5, 905–908 (1954).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.