×

Forcing minimal extensions of Boolean algebras. (English) Zbl 0922.03071

Author’s abstract: “We employ a forcing approach to extending Boolean algebras. A link between some forcings and some cardinal functions on Boolean algebras is found and exploited. We find the following applications: 1) We make Fedorchuk’s method more flexible, obtaining, for every cardinal \(\lambda\) of uncountable cofinality, a consistent example of a Boolean algebra \(A_\lambda\) whose every infinite homomorphic image is of cardinality \(\lambda\) and has a countable dense subalgebra (i.e., its Stone space is a compact \(S\)-space whose every infinite closed subspace has weight \(\lambda\)). In particular this construction shows that it is consistent that the minimal character of a nonprincipal ultrafilter in a homomorphic image of an algebra \(A\) can be strictly less than the minimal size of a homomorphic image of \(A\), answering a question of J. D. Monk. 2) We prove that for every cardinal of uncountable cofinality it is consistent that \(2^\omega=\lambda\) and both \(A_\lambda\) and \(A_{\omega_1}\) exist. 3) By combining these algebras we obtain many examples that answer questions of J. D. Monk. 4) We prove the consistency of \(\text{MA}+\neg\text{CH}+\) there is a countably tight compact space without a point of countable character, complementing results of A. Dow, V. Malykhin, and I. Juhasz. Although the algebra of clopen sets of the above space has no ultrafilter which is countably generated, it is a subalgebra of an algebra all of whose ultrafilters are countably generated. This proves, answering a question of Arkhangel’skij, that it is consistent that there is a first countable compact space which has a continuous image without a point of countable character. 5) We prove that for any cardinal \(\lambda\) of uncountable cofinality it is consistent that there is a countably tight Boolean algebra \(A\) with a distinguished ultrafilter \(\infty\) such that for every \(a\notin\infty\) the algebra \(A| a\) is countable and \(\infty\) has hereditary character \(\lambda\)”.

MSC:

03E35 Consistency and independence results
06E05 Structure theory of Boolean algebras
54A35 Consistency and independence results in general topology
03E50 Continuum hypothesis and Martin’s axiom
06E15 Stone spaces (Boolean spaces) and related structures
54A25 Cardinality properties (cardinal functions and inequalities, discrete subsets)
54H10 Topological representations of algebraic systems
54D30 Compactness
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bohuslav Balcar, Petr Simon, and Peter Vojtáš, Refinement properties and extensions of filters in Boolean algebras, Trans. Amer. Math. Soc. 267 (1981), no. 1, 265 – 283. · Zbl 0498.04007
[2] Zoltán T. Balogh, On compact Hausdorff spaces of countable tightness, Proc. Amer. Math. Soc. 105 (1989), no. 3, 755 – 764. · Zbl 0687.54006
[3] J. Baumgartner, J. Malitz, and W. Reinhardt, Embedding trees in the rationals, Proc. Nat. Acad. Sci. U.S.A. 67 (1970), 1748 – 1753. · Zbl 0209.01601
[4] James E. Baumgartner, Iterated forcing, Surveys in set theory, London Math. Soc. Lecture Note Ser., vol. 87, Cambridge Univ. Press, Cambridge, 1983, pp. 1 – 59. · Zbl 0524.03040 · doi:10.1017/CBO9780511758867.002
[5] James E. Baumgartner, Applications of the proper forcing axiom, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 913 – 959. · Zbl 0556.03040
[6] J. E. Baumgartner and P. Komjáth, Boolean algebras in which every chain and antichain is countable, Fund. Math. 111 (1981), no. 2, 125 – 133. · Zbl 0452.03044
[7] James E. Baumgartner, Donald A. Martin, and Saharon Shelah , Axiomatic set theory, Contemporary Mathematics, vol. 31, American Mathematical Society, Providence, RI, 1984. · Zbl 0544.00006
[8] James E. Baumgartner and Saharon Shelah, Remarks on superatomic Boolean algebras, Ann. Pure Appl. Logic 33 (1987), no. 2, 109 – 129. · Zbl 0643.03038 · doi:10.1016/0168-0072(87)90077-7
[9] Keith J. Devlin, ℵ\(_{1}\)-trees, Ann. Math. Logic 13 (1978), no. 3, 267 – 330. · Zbl 0397.03035
[10] Eric K. van Douwen, J. Donald Monk, and Matatyahu Rubin, Some questions about Boolean algebras, Algebra Universalis 11 (1980), no. 2, 220 – 243. · Zbl 0451.06014 · doi:10.1007/BF02483101
[11] E.vanDouwen; Cardinal Functions on Boolean Spaces; in [MB], pp. 417-467. CMP 21:10
[12] Alan Dow, An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988), no. 1, 17 – 72. · Zbl 0696.03024
[13] V. Fedorchuk; On the cardinality of hereditarily separable compact Hausdorff spaces; Soviet Math. Dokl. 16, 1975 pp. 651-655. · Zbl 0331.54029
[14] V. V. Fedorčuk, A compact space having the cardinality of the continuum with no convergent sequences, Math. Proc. Cambridge Philos. Soc. 81 (1977), no. 2, 177 – 181. · Zbl 0348.54030 · doi:10.1017/S0305004100053238
[15] Serge Grigorieff, Combinatorics on ideals and forcing, Ann. Math. Logic 3 (1971), no. 4, 363 – 394. · Zbl 0328.02041 · doi:10.1016/0003-4843(71)90011-8
[16] R. Hodel, Cardinal functions. I, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 1 – 61.
[17] I. Juhász, Cardinal functions in topology, Mathematisch Centrum, Amsterdam, 1971. In collaboration with A. Verbeek and N. S. Kroonenberg; Mathematical Centre Tracts, No. 34. · Zbl 0224.54004
[18] István Juhász, Cardinal functions in topology — ten years later, 2nd ed., Mathematical Centre Tracts, vol. 123, Mathematisch Centrum, Amsterdam, 1980. · Zbl 0479.54001
[19] I. Juhász, Cardinal functions. II, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 63 – 109.
[20] I. Juhász, On the minimum character of points in compact spaces, Topology. Theory and applications, II (Pécs, 1989) Colloq. Math. Soc. János Bolyai, vol. 55, North-Holland, Amsterdam, 1993, pp. 365 – 371. · Zbl 0798.54005
[21] István Juhász, A weakening of ♣, with applications to topology, Comment. Math. Univ. Carolin. 29 (1988), no. 4, 767 – 773. · Zbl 0676.54005
[22] I. Juhász and Z. Szentmiklóssy, Convergent free sequences in compact spaces, Proc. Amer. Math. Soc. 116 (1992), no. 4, 1153 – 1160. · Zbl 0767.54002
[23] H. G. Dales and W. H. Woodin, An introduction to independence for analysts, London Mathematical Society Lecture Note Series, vol. 115, Cambridge University Press, Cambridge, 1987. · Zbl 0629.03030
[24] Sabine Koppelberg, Minimally generated Boolean algebras, Order 5 (1989), no. 4, 393 – 406. · Zbl 0676.06019 · doi:10.1007/BF00353658
[25] Sabine Koppelberg, Counterexamples in minimally generated Boolean algebras, Acta Univ. Carolin. Math. Phys. 29 (1988), no. 2, 27 – 36. · Zbl 0676.06020
[26] Sabine Koppelberg, Handbook of Boolean algebras. Vol. 1, North-Holland Publishing Co., Amsterdam, 1989. Edited by J. Donald Monk and Robert Bonnet. · Zbl 0676.06019
[27] Piotr Koszmider, The consistency of ”¬\?\?+\?\?\le \?\(_{1}\)”, Algebra Universalis 27 (1990), no. 1, 80 – 87. · Zbl 0714.03043 · doi:10.1007/BF01190255
[28] Piotr Koszmider, On the complete invariance property in some uncountable products, Canad. Math. Bull. 35 (1992), no. 2, 221 – 229. · Zbl 0796.54056 · doi:10.4153/CMB-1992-032-5
[29] Piotr Koszmider, Semimorasses and nonreflection at singular cardinals, Ann. Pure Appl. Logic 72 (1995), no. 1, 1 – 23. · Zbl 0843.03025 · doi:10.1016/0168-0072(93)E0068-Y
[30] Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. · Zbl 0443.03021
[31] Kenneth Kunen and Jerry E. Vaughan , Handbook of set-theoretic topology, North-Holland Publishing Co., Amsterdam, 1984. · Zbl 0546.00022
[32] V.Malykhin; A Frechet-Urysohn compactum without points of countable character; Math. Notes, 41, pp. 210-216, original in Mat. Zametki 41, 1987, pp. 365-376. · Zbl 0624.54003
[33] J. Donald Monk and Robert Bonnet , Handbook of Boolean algebras. Vol. 3, North-Holland Publishing Co., Amsterdam, 1989.
[34] J. Donald Monk, Cardinal functions on Boolean algebras, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1990. · Zbl 0706.06009
[35] J.D. Monk; Cardinal Functions on Boolean Algebras a revised version of [M1], 17 September 1992, circulated notes.
[36] P. Nyikos; Forcing compact non-sequential spaces of countable tightness; Preprint.
[37] P. Nyikos; Dichotomies in Compact spaces and \(T_{5}\)-spaces; in New Classic problems; Topology Proceedings, vol 15, pp. 201-220.
[38] Mariusz Rabus, An \?\(_{2}\)-minimal Boolean algebra, Trans. Amer. Math. Soc. 348 (1996), no. 8, 3235 – 3244. · Zbl 0859.03026
[39] J. Roitman; Superatomic Boolean Algebras; in [MB] pp. 719-740. CMP 21:10
[40] Roman Sikorski, Boolean algebras, Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, NeueFolge, Band 25, Academic Press Inc., New York; Springer-Verlag, Berlin-New York, 1964. · Zbl 0123.01303
[41] Miroslav Hušek and Jan van Mill , Recent progress in general topology, North-Holland Publishing Co., Amsterdam, 1992. Papers from the Symposium on Topology (Toposym) held in Prague, August 19 – 23, 1991. · Zbl 1005.00037
[42] B.Shapirovskii; On \(\pi \)-character and \(\pi \)-weight of compact Hausdorff spaces; Soviet math. Dokl. 16, 1975, pp. 999-1003. · Zbl 0325.54002
[43] Saharon Shelah, On uncountable Boolean algebras with no uncountable pairwise comparable or incomparable sets of elements, Notre Dame J. Formal Logic 22 (1981), no. 4, 301 – 308. · Zbl 0472.03042
[44] Saharon Shelah, Constructions of many complicated uncountable structures and Boolean algebras, Israel J. Math. 45 (1983), no. 2-3, 100 – 146. · Zbl 0552.03018 · doi:10.1007/BF02774012
[45] Saharon Shelah, Around classification theory of models, Lecture Notes in Mathematics, vol. 1182, Springer-Verlag, Berlin, 1986. · Zbl 0613.03009
[46] Z. Szentmiklóssy, \?-spaces and \?-spaces under Martin’s axiom, Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978) Colloq. Math. Soc. János Bolyai, vol. 23, North-Holland, Amsterdam-New York, 1980, pp. 1139 – 1145.
[47] Dan Velleman, Souslin trees constructed from morasses, Axiomatic set theory (Boulder, Colo., 1983) Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 219 – 241. · Zbl 0558.03022 · doi:10.1090/conm/031/763903
[48] W. Weiss; Versions of Martin’s Axiom; in [KV], pp. 827-886. · Zbl 0571.54005
[49] William S. Zwicker, \?_{\?}\? combinatorics. I. Stationary coding sets rationalize the club filter, Axiomatic set theory (Boulder, Colo., 1983) Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 243 – 259. · Zbl 0536.03030 · doi:10.1090/conm/031/763904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.