×

On ideals of compact operators satisfying the \(M(r,s)\)-inequality. (English) Zbl 0917.47040

A subspace \(X\neq\{0\}\) of a Banach space \(Y\) is said to be an ideal in \(Y\) if there exists a norm one projection \(p\) on \(Y^*\) with \(\ker p= X^\perp= \{y^*\in Y^*\mid y^*(x)= 0,\forall x\in X\}\). If, moreover, \[ \| y^*\|\geq r\| py^*\|+ s\| y^*- py^*\|,\quad \forall y^*\in Y^*, \] for given \(r,s\in(0, 1]\), we say that \(X\) is an ideal satisfying the \(M(r,s)\)-inequality in \(Y\).
A net of compact operators \((k_\alpha)\) on a Banach space \(X\) is called a shrinking compact approximation of the identity if \(\lim_\alpha k_\alpha x=x\) and \(\lim_\alpha k^*_\alpha x^*= x^*\) for every \(x\in X\) and \(x^*\in X^*\).
Let \({\mathcal L}\) be a subspace of \({\mathcal L}(X)\) containing \({\mathcal K}(X)\) and identity \(I\). The authors prove:
Theorem: Let \(X\) be a Banach space and \(r,s\in (0,1]\) be such that \(r+s/2> 1\). Then \({\mathcal K}(X)\) is an ideal satisfying the \(M(r,s)\)-inequality in \({\mathcal L}\) if and only if \(X\) admits a shrinking compact approximation of the identity \((k_\alpha)\) such that \(\| k_\alpha\|\leq 1\) for all \(\alpha\) and \[ \varlimsup_\alpha\;\| rSk_\alpha+ sT(I- k_\alpha)\|\leq 1, \] whenever \(S,T\in B_{\mathcal L}\). (\(B_{\mathcal L}\) is the unit ball of \({\mathcal L}\)).

MSC:

47L20 Operator ideals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Behrends, E., A generalization of the principle of local reflexivity, Rev. Roumaine Math. Pures Appl., 31, 293-296 (1986) · Zbl 0609.46006
[2] J. C. Cabello, E. A. Nieto, On properties of \(M\); J. C. Cabello, E. A. Nieto, On properties of \(M\) · Zbl 0936.46014
[3] Dunford, N.; Schwartz, J. T., Linear Operators. Part I. General Theory (1958), Interscience: Interscience New York
[4] Fabian, M.; Godefroy, G., The dual of every Asplund space admits a projectional resolution of the identity, Studia Math., 91, 141-151 (1988) · Zbl 0692.46012
[5] Feder, M.; Saphar, P., Spaces of compact operators and their dual spaces, Israel J. Math., 21, 38-49 (1975) · Zbl 0325.47028
[6] Godefroy, G.; Kalton, N. J.; Saphar, P. D., Unconditional ideals in Banach spaces, Studia Math., 104, 13-59 (1993) · Zbl 0814.46012
[7] Godefroy, G.; Li, D., Banach spaces which are \(Mu\), Ann. Inst. Fourier, 39, 361-371 (1989) · Zbl 0659.46014
[8] Godefroy, G.; Saphar, P. D., Duality in spaces of operators and smooth norms on Banach spaces, Illinois J. Math., 32, 672-695 (1988) · Zbl 0631.46015
[9] Harmand, P.; Lima, Å., Banach spaces which are \(M\), Trans. Amer. Math. Soc., 283, 253-264 (1984) · Zbl 0545.46009
[10] Harmand, P.; Werner, D.; Werner, W., \(M. M\), Lecture Notes in Math., 1547 (1993), Springer-Verlag: Springer-Verlag Berlin/Heidelberg
[11] Hennefeld, J., \(M HB \), Indiana Univ. Math. J., 28, 927-934 (1979) · Zbl 0464.46020
[12] Johnson, J., Remarks on Banach spaces of compact operators, J. Funct. Anal., 32, 304-311 (1979) · Zbl 0412.47024
[13] Johnson, J.; Wolfe, J., On the norm of the canonical projection of \(EE^⊥\), Proc. Amer. Math. Soc., 75, 50-52 (1979) · Zbl 0405.46010
[14] Kalton, N. J., \(M\), Illinois J. Math., 37, 147-169 (1993) · Zbl 0824.46029
[15] Lima, Å., Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc., 227, 1-62 (1977) · Zbl 0347.46017
[16] Lima, Å., On \(M\), Indiana Univ. Math. J., 31, 27-36 (1982) · Zbl 0455.41016
[17] Lima, Å., Uniqueness of Hahn-Banach extensions and liftings of linear dependences, Math. Scand., 53, 97-113 (1983) · Zbl 0532.46003
[18] Lima, Å., Property (wM, Studia Math., 113, 249-263 (1995) · Zbl 0826.46013
[19] Lindenstrauss, J.; Tzafriri, L., Classical Banach Spaces, I, (1977), Springer-Verlag: Springer-Verlag Berlin/ Heidelberg/New York · Zbl 0362.46013
[20] Oja, E., On the uniqueness of the norm-preserving extension of a linear functional in the Hahn-Banach theorem, Izv. Akad. Nauk Est. SSR Ser. Fiz. Mat., 33, 424-438 (1984)
[21] Oja, E., Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem, Mat. Zametki, 43, 237-246 (1988)
[22] Oja, E., A note on \(M\), Acta Comment. Univ. Tartuensis, 960, 75-92 (1993) · Zbl 1214.46005
[23] Oja, E., HB, Mathematika, 44, 120-132 (1997) · Zbl 0878.46013
[24] Phelps, R. R., Convex Functions, Monotone Operators and Differentiability. Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math., 1364 (1993), Springer-Verlag: Springer-Verlag Berlin/Heidelberg · Zbl 0921.46039
[25] Phelps, R. R., Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc., 95, 238-255 (1960) · Zbl 0096.31102
[26] Werner, W., Inner \(M\), Math. Ann., 291, 205-223 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.