×

Small Salem numbers, exceptional units, and Lehmer’s conjecture. (English) Zbl 0883.11045

This mainly expository article discusses some interesting recent work on the theme of Lehmer’s conjecture about Mahler’s measure. The first topic concerns exceptional units and is based on the idea that if \(\alpha\) is an algebraic unit with small Mahler measure then one would expect \(1- \alpha^n\) to be a unit for many values of \(n\). Some experimental evidence is presented for this in case \(\alpha\) is a small Salem number. More details on this can be found in the author’s recent article [J. H. Silverman, Exp. Math. 4, No. 1, 69-83 (1995; Zbl 0851.11064)].
The absolute canonical height of an algebraic number and the Mahler measure are closely related. Observing that the height satisfies \(H(\alpha^n)= H(\alpha)^n\), i.e. that \(H(\phi(\alpha))= H(\alpha)^n\) for the rational function \(\phi(x)= x^n\), motivates a definition essentially due to Tate of a height \(\widehat H_\phi\) for any rational function \(\phi\) of degree \(n \geq 2\) which has the property that \(\widehat H_\phi(\phi(\alpha))= \widehat H_\phi(\alpha)^n\). There is a natural generalization of the Lehmer conjecture (or more appropriately the Schinzel-Zassenhaus conjecture) to this context. A number of interesting examples are discussed, for example the case where \(\phi\) is the duplication map on an elliptic curve \(E\) in which case \(\widehat H_\phi\) is the exponential of the standard canonical height on \(E\). If \(\phi\) is a polynomial with integer coefficients, then a consideration of the Julia set of \(\phi\) leads naturally to the definition of \(\phi\)-Pisot and \(\phi\)-Salem numbers and an interesting question about the existence of such numbers. (Also submitted to MR).

MSC:

11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure
11R27 Units and factorization
11J68 Approximation to algebraic numbers
11D61 Exponential Diophantine equations

Citations:

Zbl 0851.11064
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] A. Baker, The theory of linear forms in logarithms , in Transcendence theory : Advances and applications , Academic Press, London, 1977. · Zbl 0361.10028
[2] P.E. Blanksby and H.L. Montgomery, Algebraic integers near the unit circle , Acta Arith. 18 (1971), 355-369. · Zbl 0221.12003
[3] D. Boyd, Small Salem numbers , Duke Math. J. 44 (1977), 315-328. · Zbl 0353.12003 · doi:10.1215/S0012-7094-77-04413-1
[4] G. Call and J.H. Silverman, Canonical heights on varieties with morphisms , Compositio Math. 89 (1993), 163-205. · Zbl 0826.14015
[5] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial , Acta Arith. 34 (1979), 391-401. · Zbl 0416.12001
[6] J.-H. Evertse, On equations in \(S\)-units and the Thue-Mahler equation , Invent. Math. 75 (1984), 561-584. · Zbl 0521.10015 · doi:10.1007/BF01388644
[7] M. Hindry and J. Silverman, On Lehmer’s conjecture for elliptic curves , in Séminaire de théorie des nombres (Paris 1988-1989) (C. Goldstein, ed.), Progress in Math. 91 , Birkhäuser, Boston, 1990, 103-116. · Zbl 0741.14013
[8] L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten , J. Reine Angew. Math. 53 (1857), 133-175. · ERAM 053.1389cj
[9] Michel Laurent, Minoration de la hauteur de Néron-Tate , in Séminaire de théorie des nombres (Paris 1981-1982), Birkhäuser, 1983, 137-151. · Zbl 0521.14010
[10] D.H. Lehmer, Factorization of certain cyclotomic functions , Annals Math. 34 (1933), 461-479. JSTOR: · Zbl 0007.19904 · doi:10.2307/1968172
[11] D. Masser, Counting points of small height on elliptic curves , Bull. Soc. Math. France 117 (1989), 247-265. · Zbl 0723.14026
[12] P. Moussa, J.S. Geronimo, and D. Bessis, Ensembles de Julia et propriétés de localisation des familles itérées d’entiers algébrique , C.R. Acad. Sci. Paris 299 (1984), Ser. I Math., 281-284. · Zbl 0563.30018
[13] P. Moussa, Diophantine properties for Julia sets , in Chaotic dynamics and fractals (M.F. Barnsely and S.G. Demko, eds.), Academic Press, 1986, 215-227. · Zbl 0607.12001
[14] R. Salem, A remarkable class of algebraic integers. Proof of a conjecture of Vijayaraghavan , Duke Math. J. 11 (1944), 103-108. · Zbl 0063.06657 · doi:10.1215/S0012-7094-44-01111-7
[15] C.L. Siegel, Algebraic integers whose conjugates lie in the unit circle , Duke Math. J. 11 (1944), 597-602. · Zbl 0063.07005 · doi:10.1215/S0012-7094-44-01152-X
[16] J.H. Silverman, Lehmer’s conjecture and primes of small norm , unpublished.
[17] ——–, Exceptional units and numbers of small Mahler measure , Experimental Math. 4 (1995), 69-83. · Zbl 0851.11064 · doi:10.1080/10586458.1995.10504309
[18] C.J. Smyth, On the product of conjugates outside the unit circle of an algebraic integer , Bull. London Math. Soc. 3 (1971), 169-175. · Zbl 0235.12003 · doi:10.1112/blms/3.2.169
[19] C.L. Stewart, Algebraic integers whose conjugates lie near the unit circle , Bull. Soc. Math. France 196 (1978), 169-176. · Zbl 0396.12002
[20] S. Zhang, Lower bounds for heights on elliptic curves , · Zbl 0421.14006 · doi:10.1007/BF01215078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.