×

Fibonacci manifolds as two-fold coverings of the three-dimensional sphere and the Meyerhoff-Neumann conjecture. (English. Russian original) Zbl 0882.57011

Sib. Math. J. 37, No. 3, 461-467 (1996); translation from Sib. Mat. Zh. 37, No. 3, 534-542 (1996).
The Fibonacci groups \(F(2,m)\) were introduced by Conway and have the following presentation: \(F(2,m)= (x_1,x_2, \dots, x_m\); \(x_ix_{i+1} =x_{i+2}\), \(i\bmod m)\). Thus, the group \(F(2,2n)\), \(n\geq 2\), is realizable as a co-compact discrete group of isometries acting without fixed points on the space \(X_n\), where \(X_2=S^3\), \(X_3=E^3\), and \(X_n=H^3\) for \(n\geq 4\). A 3-manifold \(M_n= X_n/F(2,2n)\), \(n\geq 2\), uniformized by a Fibonacci group is referred to as a Fibonacci manifold. Denote by \(Th_n\), \(n\geq 2\), the closure of the 3-string braid \((\sigma_1 \sigma_2^{-1})^n\) given in canonical generators. One of the main results of the paper is the following
Theorem 1. Each Fibonacci manifold \(M_n\), \(n\geq 2\), can be represented as a two-fold covering of \(S^3\) branched over the link \(Th_n\).
Some closed orientable hyperbolic 3-manifold, denoted by \(N=W (3,-2;6,-1)\), was constructed by Dehn surgeries with parameters \((3,-2)\) and \((6,-1)\) on the components of the Whitehead link \(W\). The other result of the paper is the following
Theorem 2. The Fibonacci manifold \(M_4\) is a two-fold unbranched covering of the Meyerhoff-Neumann manifold \(N\).

MSC:

57N10 Topology of general \(3\)-manifolds (MSC2010)
57M12 Low-dimensional topology of special (e.g., branched) coverings
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. Conway, ”Advanced problem 5327,” Amer. Math. Monthly,72, 915 (1965). · doi:10.2307/2315059
[2] J. Conway, ”Solution to Advanced problem 5327,” Amer. Math. Monthly,74, 91–93 (1967). · doi:10.2307/2314083
[3] D. L. Johnson, J. W. Wamsley, and D. Wright, ”The Fibonacci groups,” Proc. London Math. Soc.,29, 577–592 (1974). · Zbl 0327.20014 · doi:10.1112/plms/s3-29.4.577
[4] R. M. Thomas, ”The Fibonacci groupsF(2, 2m),” Bull. London Math. Soc.,21, No. 5, 463–465 (1989). · Zbl 0647.20027 · doi:10.1112/blms/21.5.463
[5] H. Helling, A. C. Kim, and J. Mennicke, A Geometric Study of Fibonacci Groups [Preprint/SFB-343, Diskrete Strukturen in der Mathematik], Bielefeld (1990). · Zbl 0896.20026
[6] B. Zimmermann, ”On the Hantzche-Wendt manifold,” Monatsh. Math.,110, No. 3–4, 321–327 (1990). · Zbl 0717.57005 · doi:10.1007/BF01301685
[7] J. Hempel, ”The lattice of branched covers over the figure-eight knot,” Topology Appl.,34, No. 2, 183–201 (1990). · Zbl 0689.57002 · doi:10.1016/0166-8641(90)90080-L
[8] H. M. Hilden, M. T. Lozano, and J. M. Montesinos, ”The arithmeticity of the figure-eight knot orbifolds,” in: Topology’90, Walter de Gruyter, Berlin, 1992, pp. 169–183. · Zbl 0767.57004
[9] A. Yu. Vesnin and A. D. Mednykh, ”Hyperbolic volumes of Fibonacci manifolds,” Sibirsk. Mat. Zh.,36, No. 2, 266–277 (1995). · Zbl 0865.57012
[10] R. Meyerhoff and W. D. Neumann, ”An asymptotic formula for the eta invariants of hyperbolic 3-manifolds,” Comment. Math. Helv.,67, 28–46 (1992). · Zbl 0791.57009 · doi:10.1007/BF02566487
[11] J. S. Birman, ”Braids, links, and mapping class groups,” Ann. of Math. Stud., No. 82 (1975). · Zbl 0305.57013
[12] W. P. Thurston, The Geometry and Topology of Three-Manifolds, Princeton Univ., Princeton (1980) (Lecture Notes in Math.).
[13] S. Kojima and D. D. Long, ”Virtual Betti numbers of some hyperbolic 3-manifolds,” in: A Fete of Topology, Academic Press Inc., 1988, pp. 417–442.
[14] M. Sakuma and J. Weeks, ”Examples of canonical decompositions of hyperbolic link complements,” Proc. Appl. Math. Workshop.,4, KAIST, Taejon, 1994, pp. 185–232. · Zbl 0858.57021
[15] D. Rolfsen, Knots and Links, Publish of Perish Inc., Berkeley, Co. (1976). · Zbl 0339.55004
[16] R. H. Crowell and R. H. Fix, Introduction to Knot Theory [Russian translation], Mir, Moscow (1967). · Zbl 0149.20901
[17] A. Haefliger and N. D. Quach, ”Une presentation de groupe fundamental d’une orbifold,” Astérisque,116, 98–107 (1984). · Zbl 0556.57032
[18] C. Adams, M. Hildebrand, and J. Weeks, ”Hyperbolic invariants of knots and links,” Trans. Amer. Math. Soc.,326, 1–56 (1991). · Zbl 0733.57002 · doi:10.2307/2001854
[19] M. Bolieau and B. Zimmermann, ”The{\(\pi\)}-orbifold group of a link,” Math. Z.,200, 187–208 (1989). · Zbl 0663.57006 · doi:10.1007/BF01230281
[20] M. B. Thistlethwaite, ”Knot tabulation and related topics,” London Math. Soc. Lecture Note Ser. 93, 1–76 (1985). · Zbl 0571.57004
[21] A. Borel, ”Commensurability classes and hyperbolic volumes,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),8, 1–33 (1991). · Zbl 0473.57003
[22] J. M. Montesinos and W. Whitten, ”Constructions of two-fold branched covering spaces,” Pacific J. Math.,125, 415–446 (1986). · Zbl 0562.57004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.