×

Stability of memory reconstruction from the Dirichlet-to-Neumann operator. (English. Russian original) Zbl 0880.45006

Sib. Math. J. 38, No. 4, 636-646 (1997); translation from Sib. Mat. Zh. 38, No. 4, 738-749 (1997).
The article is devoted to determining the memory function \( k(x,t) \) in the integro-differential equation \[ u_{tt} (x,t) - \Delta u(x,t) - \int\limits_{-\infty}^{t} u(x, \tau) k(x, t - \tau) d\tau = 0 \tag{1} \] with the boundary condition \[ u(x,t) {\mid}_{\partial \Omega \times \mathbb R} = g(x,t). \tag{2} \] Here \( x \in \Omega \subset {\mathbb {R}}^n\), \(n \geq 3\), \(t >0\), \(\Omega\) is a bounded domain with a smooth boundary and the memory function \( k(x,t)\) belongs to the class \[ W(K) := \bigl\{k(x,t) \in C^2 \bigl(\overline{\Omega} \times [0, \infty) \bigr) \mid |k |_{C^2 (\overline{\Omega} \times [0, \infty))} \leq K \bigr\} \] for some \( K > 0 \), \( k(x,t) = 0 \) for \( t < 0 \).
The authors consider the inverse problem of the reconstruction of \(k(x,t) \) from the Dirichlet-to-Neumann operator \( H\: H^{1}_{\gamma} (\partial \Omega \times {\mathbb R} ) \longrightarrow H^{0}_{\gamma} (\partial \Omega \times {\mathbb R} )\), where \( H\bigl( g(x,t)\bigr) = {\partial}_{\nu} u(x,t) \) is the normal derivative of the solution to the direct problem (1), (2).
The main results of the article state that, for different \( k_1, k_2 \in W(K) \), there exists a positive \( {\gamma}_0 = {\gamma}_0 (K, \Omega) \) such that, for \( \gamma > {\gamma}_0 \), the corresponding Dirichlet-to-Neumann operators \( H_1 \), \(H_2 \) act correctly and satisfy the estimate \( |k_1 - k_2 |_{\gamma , 0} \leq \omega (|H_1 - H_2 |), \) where \( \omega (\varepsilon) \sim C(\Omega , K, \gamma , n) \cdot \bigl(C(\Omega)/(\ln {\varepsilon}^{-1})\bigr)^{1/(n+2)} \) as \( \varepsilon \rightarrow 0 \).
Here \( |. |_{\gamma , s} \) is the norm in the space \( H^{s}_{\gamma} (\partial \Omega \times {\mathbb R} )\) that consists of the functions \( u(x,t) \) such that \( e^{- \gamma t} u(x,t) \in H^s (\partial \Omega \times {\mathbb R} )\).

MSC:

45K05 Integro-partial differential equations
47G20 Integro-differential operators
42B30 \(H^p\)-spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A.-P. Calderón, ”On an inverse boundary value problem,” in: Seminar on Numerical Analysis and Its Applications to Continuum Physics (Rio de Janeiro, 1980), Soc. Brasil. Mat., Rio de Janeiro, 1980, pp. 65–73.
[2] J. Sylvester and G. Uhlmann, ”A global uniqueness theorem for an inverse boundary value problem,” Ann. of Math. (2),125, No. 1, 153–169 (1987). · Zbl 0625.35078 · doi:10.2307/1971291
[3] G. Alessandrini, ”Stable determination of conductivity by boundary measurements,” Appl. Anal.,27, No. 1-3, 153–172 (1988). · Zbl 0616.35082 · doi:10.1080/00036818808839730
[4] A. Nachman, ”Reconstructions from boundary measurements,” Ann. of Math. (2),128, No. 3, 531–576 (1988). · Zbl 0675.35084 · doi:10.2307/1971435
[5] Rakesh and W. W. Symes, ”Uniqueness for an inverse problem for the wave equation,” Comm. Partial Differential Equations,13, No. 1, 87–96 (1988). · Zbl 0667.35071 · doi:10.1080/03605308808820539
[6] Z. Sun, ”On continuous dependence for an inverse initial boundary value problem for the wave equation,” J. Math. Anal. Appl.,150, 188–200 (1990). · Zbl 0733.35107 · doi:10.1016/0022-247X(90)90207-V
[7] L. R. Volevich and S. G. Gindikin, ”The method of energy estimates in the mixed problems,” Uspekhi Mat. Nauk,35, No. 5, 53–120 (1980). · Zbl 0455.34045
[8] J.-L. Lions and E. Magenes, Inhomogeneous Boundary Value Problems [Russian translation], Mir, Moscow (1971).
[9] V. Isakov, Inverse Problems in PDE, Springer, Berlin (to appear). · Zbl 0728.35141
[10] V. Isakov, ”Completeness of products of solutions and some inverse problems for PDE,” J. Differential Equations,92, No. 2, 305–316 (1991). · Zbl 0728.35141 · doi:10.1016/0022-0396(91)90051-A
[11] L. Hörmander, The Analysis of Linear Partial Differential Operators [Russian translation], Mir, Moscow (1986).
[12] V. P. Mikhaîlov, Partial Differential Equations [in Russian], Nauka, Moscow (1976).
[13] A. L. Bukhgeîm, Volterra Equations and Inverse Problems [in Russian], Nauka, Novosibirsk (1983).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.