×

Deformation quantization and Nambu mechanics. (English) Zbl 0877.70012

Summary: Starting from deformation quantization (star-products), the quantization problem of Nambu mechanics is investigated. After considering some impossibilities and pushing some analogies with field quantization, a solution to the quantization problem is presented in the novel approach of Zariski quantization of fields (observables, functions, in this case polynomials). This quantization is based on the factorization over \(\mathbb R\) of polynomials in several real variables. We quantize the infinite-dimensional algebra of fields generated by the polynomials by defining a deformation of this algebra which is Abelian, associative and distributive. This procedure is then adapted to derivatives (needed for the Nambu brackets), which ensures the validity of the fundamental identity of Nambu mechanics also at the quantum level. Our construction is in fact more general than the particular case considered here: it can be utilized for quite general defining identities and for much more general star-products.

MSC:

53D55 Deformation quantization, star products
70H99 Hamiltonian and Lagrangian mechanics
81S10 Geometry and quantization, symplectic methods
17B81 Applications of Lie (super)algebras to physics, etc.
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bayen, F., Flato, M.: Remarks concerning Nambu’s generalized mechanics. Phys. Rev. D11, 3049–3053 (1975) · doi:10.1103/PhysRevD.11.3049
[2] Bayen, F., Flato, M., Frønsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation Theory and Quantization: I. Deformations of Symplectic Structures. Ann. Phys.111, 61–110 (1978) · Zbl 0377.53024 · doi:10.1016/0003-4916(78)90224-5
[3] Bayen, F., Flato, M., Frónsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation Theory and Quantization: II. Physical Applications. Ann. Phys.111, 111–151 (1978) · Zbl 0377.53025 · doi:10.1016/0003-4916(78)90225-7
[4] Bonneau, Ph., Flato, M., Gerstenhaber, M., Pinczon, G.: The Hidden Group Structure of Quantum Groups. Commun. Math. Phys.161, 125–156 (1994) · Zbl 0822.17011 · doi:10.1007/BF02099415
[5] Chatterjee, R.: Dynamical Symmetries and Nambu Mechanics. Lett. Math. Phys.36, 117–126 (1996) · Zbl 0840.70015 · doi:10.1007/BF00714375
[6] Chatterjee, R., Takhtajan, L.: Aspects of Classical and Quantum Nambu Mechanics. Preprint hep-th: 9507125 (1995) · Zbl 0861.70018
[7] Dirac, P. A. M.: Lectures on Quantum Mechanics, Belfer Graduate School of Sciences Monograph Series No. 2, Yeshiva University, New-York, 1964
[8] Dito, G., Flato, M.: Generalized Abelian Deformations: Application to Nambu Mechanics. To appear in Lett. Math. Phys. (1996) · Zbl 0869.58025
[9] Dito, J.: Star-Product Approach to Quantum Field Theory: The Free Scalar Field. Lett. Math. Phys.20, 125–134 (1990) · Zbl 0726.22017 · doi:10.1007/BF00398277
[10] Flato, M., Frønsdal, C.: Unpublished (1992)
[11] Flato, M., Sternheimer, D.: Closedness of Star-Products and Cohomologies. In: Brylinsky, J. L. et al. (eds.) Lie Theory and Geometry: In Honor of Bertram Kostant. Progress in Mathematics, Boston: Birkhäuser, 1994, pp. 241–259 · Zbl 0853.58058
[12] Gautheron, Ph.: Some Remarks Concerning Nambu Mechanics. Lett. Math. Phys.37, 103–116 (1996) · Zbl 0849.70014 · doi:10.1007/BF00400143
[13] Gerstenhaber, M., Schack, S., Algebraic Cohomology and Deformation Theory. In: Hazewinkel, M. and Gerstenhaber, M. (eds.) Deformation Theory of Algebras and Structures and Applications. Dordrecht: Kluwer, 1988, pp. 11–264 See also: Barr, M.: Harrison Homology, Hochschild Homology, and Triples. J. Alg.,8 314–323 (1968)
[14] Gerstenhaber, M., Schack, S.: Algebras, Bialgebras, Quantum Groups, and Algebraic Deformations. In: Gerstenhaber, M. and Stasheff, J. (eds.) Deformation Theory and Quantum Groups with Applications to Mathematical Physics. Contemporary Mathematics134, Providence (RI): American Mathematical Society, 1992, pp. 51–92. · Zbl 0788.17009
[15] Gutt, S.: Unpublished (1992)
[16] Pankaj Sharan: *-Product Representation of Path Integrals. Phys. Rev. D20, 414–426 (1979) · doi:10.1103/PhysRevD.20.414
[17] Nambu, Y.: Generalized Hamiltonian Dynamics. Phys. Rev. D7, 2405–2412 (1973) · Zbl 1027.70503 · doi:10.1103/PhysRevD.7.2405
[18] Nash, J. F.: Analyticity of the solutions of implicit function problems with analytic data. Ann. of Math.84, 345–355 (1966) · Zbl 0173.09202 · doi:10.2307/1970448
[19] Sahoo, D., Valsakumar, M. C.: Nambu mechanics and its quantization. Phys. Rev. A46, 4410–4412 (1992) · doi:10.1103/PhysRevA.46.4410
[20] Schouten, J. A.: Tensor Analysis for Physicists. Second edition. New-York: Dover, 1989 · Zbl 0044.38302
[21] Takhtajan, L.: On Foundation of the Generalized Nambu Mechanics. Commun. Math. Phys.160, 295–315 (1994) · Zbl 0808.70015 · doi:10.1007/BF02103278
[22] Weitzenböck, R.: Invariantentheorie. Groningen: P. Noordhoff, 1923
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.