×

Asymptotic estimates for the entries of the matrices of inverse operators and harmonic analysis. (English. Russian original) Zbl 0870.43003

Sib. Math. J. 38, No. 1, 10-22 (1997); translation from Sib. Mat. Zh. 38, No. 1, 14-28 (1997).
Let \(G\) be a countable discrete Abelian group and let \(S\) be a subset of \(G\). Let \(\text{End }X\) be the Banach algebra of bounded linear operators acting on a complex Banach space \(X\). Fix a projection-valued function \(P\: S\to\text{End }X\) such that \(P(i)P(j)=0\;(i\neq j)\) and, for every \(x\in X\), the series \(\sum\limits_{i\in S}P(i)x\) converges unconditionally to \(x\). By use of this resolution of identity, each \(A\in\text{End }X\) is represented in the matrix form \((A_{ij})\) with \(A_{ij}=P(i)AP(j)\), \(i,j\in S\). We set \(d_A(g)=\sup\limits_{i,j\in S,\;i-j=g}|A_{ij}|\), \(g\in G\). Suppose that \(A\in \text{End }X\) is invertible with inverse \(B=A^{-1}\). In the paper under review, the author studies how the rate of decrease of \(\{d_A(g)\}\) is related to that of \(\{d_B(g)\}\).
The main theorem (Theorem 2) is as follows. Let \(A\in\text{End }X\) be invertible and satisfy one of the following conditions:
(1) \(\sum\limits_{k\in G}d_A(k)\alpha (k)<\infty\) (where \(\alpha\) is a weight function on \(G\) satisfying \(\alpha (g)\geq 1\), \(\alpha (g_1+g_2)\leq \alpha (g_1)\alpha (g_2)\), and \(\lim\limits_{n\to \infty} n^{-1}\log \alpha (gn)=0\) for all \(g,g_1,g_2\in G\));
(2) \(\lim\limits_{k\to\infty}d_A(k)/\beta (k)=0\) (where \(\sum_{g\in G}\beta (g)\leq\infty\), \(\sum_{s\in G}\beta(g-s)\beta(s)\leq L\beta(g)\), and
\(\lim_{n\to\infty} n^{-1}\log1/\beta(ng)\) \(=0\) for some \(L>0\) and for all \(g\in G\));
(3) \(G={\mathbb Z}^n\) and there are constants \(M=M(A)\) and \(\gamma =\gamma (A)\in (0,1)\) such that \(d_A(k)\leq M{\gamma}^{|k|}\), \(k\in{\mathbb Z}^n\), \(k=(k_1,\dots ,k_n)\), \(|k|=\max\limits_{1\leq i\leq n}|k_i|\).
Then the matrix of the inverse operator \(B=A^{-1}\) satisfies the respective conditions:
(1’) \(\sum\limits_{k\in G} d_B(k)\alpha (k)<\infty\);
(2’) \(\lim\limits_{k\to\infty}d_B(k)/\beta (k)=0\);
(3’) \(d_B(k)\leq M_0\gamma_0^{|k|}\) for all \(k\in {\mathbb Z}^n\) and some \(M_0>0\), \(\gamma_0 \in (0,1)\).
The author uses this result to generalize the well-known N. Wiener theorem on absolutely convergent Fourier series.
Select some function \(f\) in the algebra \(L_1(\mathbb R)\) whose Fourier transform possesses the properties \(\hat f(0)=1\) and \(\text{supp}\hat f\subset [-1/2,1/2]\). Given \(\varphi\in C(\mathbb R)\), define the function \(d_{\varphi}(\lambda )=|(fe_{\lambda})*\varphi|\), where \(e_{\lambda}(t)=\exp i\lambda t\). Suppose that the function \(\varphi\in C(\mathbb R)\) satisfies the condition \(\inf\limits_{t\in \mathbb R}|\varphi(t)|>0\) and one of the following conditions:
(1) \(\int\limits_{\mathbb R}d_{\varphi}(\lambda)|\lambda|^qd\lambda<\infty\) for some \(q>1\);
(2) \(\lim\limits_{|\lambda|\to\infty} d_{\varphi}(\lambda)|\lambda|^q=0\) for some \(q>1\);
(3) \(d_{\varphi}(\lambda)\leq C\exp(-\varepsilon|\lambda|)\) for some \(C,\varepsilon >0\).
Then the function \(\psi(t)=1/\varphi(t)\) satisfies the respective conditions:
(1’) \(\int\limits_{\mathbb R}d_{\varphi}(\lambda)|\lambda |^qd\lambda < \infty\);
(2’) \(\lim\limits_{|\lambda |\to\infty}d_{\varphi}(\lambda)|\lambda |^q=0\);
(3’) \(d_{\varphi}(\lambda)\leq C_0\exp(-{\varepsilon}_0|\lambda |)\) for some \(C_0, {\varepsilon}_0>0\).
The article generalizes some earlier results of the author, see [Mat. Zametki 52, No.2, 17-26 (1992; Zbl 0805.43002)]and [Funkts. Anal. Prilozh. 29, No.2, 61-64 (1995; Zbl 0849.47001)].

MSC:

43A50 Convergence of Fourier series and of inverse transforms
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. R. Allan, ”Ideals of vector-valued functions,” Proc. London Math. Soc.,18, No. 3, 193–216 (1968). · Zbl 0194.44501 · doi:10.1112/plms/s3-18.2.193
[2] S. Bochner and R. S. Phillips, ”Absolutely convergent Fourier expansions for non-commutative normed rings,” Ann. of Math.,43, No. 3, 409–418 (1942). · Zbl 0060.27204 · doi:10.2307/1968800
[3] E. Hewitt and K. Ross, Abstract Harmonic Analysis. Vol. 2 [Russian translation], Nauka, Moscow (1975). · Zbl 0837.43002
[4] S. Demko, W. F. Moss, and P. W. Smith, ”Decay rates for inverses of band matrices,” Math. Comp.,43, 491–499 (1984). · Zbl 0568.15003 · doi:10.1090/S0025-5718-1984-0758197-9
[5] M. A. Shubin, ”Pseudodifference operators and their Green’s function,” Izv. Akad. Nauk SSSR Mat.,49, No. 3, 652–671 (1985). · Zbl 0574.39006
[6] V. G. Kurbatov, ”On algebras of difference and integral operators, Funktsional. Anal. i Priloizhen,24, No. 2, 98–99 (1990). · Zbl 0723.47029
[7] I. A. Blatov, ”Estimates for entries of inverse matrices and modifications of the matrix sweep method,” Sibirsk. Mat. Zh.,33, No. 2, 10–21 (1992). · Zbl 0764.65012
[8] A. G. Baskakov, ”Wiener’s theorem and asymptotic estimates for entries of inverse matrices,” Funktsional. Anal. i Prilozhen.,24, No. 3, 64–65 (1990). · Zbl 0734.41031 · doi:10.1007/BF01077924
[9] I. M. Gel’fand, D. A. Raîkov, and G. E. Shilov, Commutative Normed Rings [in Russian], Fizmatgiz, Moscow (1960). · Zbl 0134.32102
[10] M. A. Naîmark, Normed, Rings [in Russian], Nauka, Moscow (1968).
[11] Y. Domar, ”Harmonic analysis based on certain commutative Banach algebras,” Acta Math.,96, 1–66 (1956). · Zbl 0071.11302 · doi:10.1007/BF02392357
[12] N. Dunford and J. T. Schwartz, Linear Operators. Vol. 2 [Russian, translation], Mir, Moscow (1966). · Zbl 0146.12601
[13] C. S. Herz, ”The spectral theory of bounded functions,” Trans. Amer. Math. Soc.,94, No. 1, 181–232 (1990). · Zbl 0090.33202 · doi:10.1090/S0002-9947-1960-0131779-3
[14] R. Richtmyer, Principles of Advanced Mathematical Physics [Russian translation], Mir, Moscow (1982). · Zbl 0537.46003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.