×

Consequences of the \(A_ l\) and \(C_ l\) Bailey transform and Bailey lemma. (English) Zbl 0870.33012

Over the past 15 years, a theory of identities for multiple (basic) hypergeometric series associated to root systems (but not requiring any knowledge of root systems) was built up, by Stephen Milne and his followers. This theory extends the classical theory of (basic) hypergeometric series form single sums to multiple summations. The paper under review constitutes a fundamental corner stone in the development of this theory. It is well-known that the classical Bailey lemma and Bailey transform allow to conveniently derive new identities from known ones. In this paper, two different extensions of the Bailey lemma and transform to the multiple case, one associated to root systems \(A_\ell\), the other associated to root systems \(C_\ell\), are given. Whereas previously proofs of identities in this multiple series theory required usually involved and labourious recursive arguments, these \(A_\ell\) and \(C_\ell \) extensions of the Bailey lemma and transform now allow to produce an host of new identities with ease, including extensions of many important classical identities to the multiple case. In this paper, \(A_\ell\) and \(C_\ell\) extensions of Watson’s \(_8\Phi_7\)-to-\(_4\Phi_3\)-transformation, of Jackson’s very-well-poised \(_8\Phi_7\)-summation, and of Sears’ balanced \(_4\Phi_3\)-transformation are derived. Further applications can be found in [S. C. Milne, “Balanced \(_3\Phi_2\) summation theorems for \(U(n)\) basic hypergeometric series” preprint; S. C. Milne and J. W. Newcomb, J. Comput. Appl. Math. 68, No. 1-2, 239-285 (1996; reviewed below)]. More general inversion formulas, which are at the heart of the Bailey lemma, were found by Bhatnagar, Milne, and Schlosser [G. Bhatnagar and S. C. Milne, “Generalized bibasic hypergeometric series and their \(U(n)\) extension”, Adv. Math., to appear; M. Schlosser, “Multidimensional matrix inversions and \(A_r\) and \(D_r\) basic hypergeometric series”, Ramanujan J., to appear], and were applied in [M. Schlosser, ibid.] to find extensions of “Gosper-type” summation formulas, and in [G. Bhatnagar and M. Schlosser, “\(C_n\) and \(D_n\) very-well-poised \(_{10} \Phi_9\) transformations”, preprint] to find new \(C_n\) and \(D_n\) extensions of many of the aforementioned classical identities.

MSC:

33D80 Connections of basic hypergeometric functions with quantum groups, Chevalley groups, \(p\)-adic groups, Hecke algebras, and related topics
05A30 \(q\)-calculus and related topics
05A19 Combinatorial identities, bijective combinatorics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal, A. K.; Andrews, G.; Bressoud, D., The Bailey lattice, J. Indian Math. Soc., 51, 57-73 (1987) · Zbl 0668.10020
[2] Al-Salam, W. A.; Verma, A., On quadratic transformations of basic series, SIAM J. Math. Anal., 15, 414-420 (1984) · Zbl 0533.33002
[3] Andrews, G. E., Problems and prospects for basic hypergeometric functions, (Askey, R., Theory and Applications of Special Functions (1975), Academic Press: Academic Press New York), 191-224
[4] Andrews, G. E., The Theory of Partitions, (Rota, G.-C., Encyclopedia of Mathematics and its Applications, Vol. 2 (1976), Addison-Wesley: Addison-Wesley Reading, MA), reissued by Cambridge Univ. Press, Cambridge, 1985 · Zbl 0371.10001
[5] Andrews, G. E., Connection coefficient problems and partitions, (Ray-Chaudhuri, D., Proc. Sympos. Pure Math., Vol. 34 (1979)), 1-24 · Zbl 0186.30203
[6] Andrews, G. E., Multiple series Rogers-Ramanujan type identities, Pacific J. Math., 114, 267-283 (1984) · Zbl 0547.10012
[7] Andrews, G. E., \(q\)-series: their development and application in analysis, number theory, combinatorics, physics and computer algebra, (NSF CBMS Regional Conference Series, Vol. 66 (1986)) · Zbl 0594.33001
[8] Andrews, G. E., The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc., 293, 113-134 (1986) · Zbl 0593.10018
[9] Andrews, G. E.; Baxter, R. J.; Forrester, P. J., Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities, J. Statist. Phys., 35, 193-266 (1984) · Zbl 0589.60093
[10] Andrews, G. E.; Dyson, F. J.; Hickerson, D., Partitions and indefinite quadratic forms, Invent. Math, 91, 391-407 (1988) · Zbl 0642.10012
[11] Appell, P.; de Fériet, J. Kampé, Fonctions Hypergéométriques et Hypersphériques, (Polynomes d’Hermites (1926), Gauthier-Villars: Gauthier-Villars Paris) · JFM 52.0361.13
[12] Bailey, W. N., Generalized Hypergeometric Series (1935), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, reprinted by Stechert-Hafner, New York, 1964 · Zbl 0011.02303
[13] Bailey, W. N., Some identities in combinatory analysis, (Proc. London Math. Soc., 49 (1947)), 421-435, 2 · Zbl 0041.03403
[14] Bailey, W. N., Identities of the Rogers-Ramanujan type, (Proc. London Math. Soc., 50 (1949)), 1-10, 2 · Zbl 0031.39203
[15] Baxter, R. J., Exactly Solved Models in Statistical Mechanics (1982), Academic Press: Academic Press London and New York · Zbl 0538.60093
[16] Biedenharn, L. C.; Louck, J. D., A pattern calculus for tensor operators in the unitary groups, Comm. Math. Phys., 8, 89-131 (1968) · Zbl 0155.32405
[17] Biedenharn, L. C.; Louck, J. D., Angular Momentum in Quantum Physics: Theory and Applications, (Rota, G.-C., Encyclopedia of Mathematics and Its Applications, Vol. 8 (1981), Addison-Wesley: Addison-Wesley Reading, MA) · Zbl 0474.00023
[18] Biedenharn, L. C.; Louck, J. D., The Racah-Winger Algebra in Quantum Theory, (Rota, G.-C., Encyclopedia of Mathematics and its Applications, Vol. 9 (1981), Addison-Wesley: Addison-Wesley Reading, MA) · Zbl 0497.22024
[19] Bressoud, D. M., Some identities for terminating \(q\)-series, (Math. Proc. Cambridge Philos. Soc., 89 (1981)), 211-223 · Zbl 0454.33003
[20] Bressoud, D. M., A matrix inverse, (Proc. Amer. Math. Soc., 88 (1983)), 446-448 · Zbl 0529.05006
[21] Carlitz, L., Some inverse relations, Duke Math. J., 40, 803-901 (1973) · Zbl 0276.05012
[22] Dyson, F. J., Three identities in combinatory analysis, J. London Math. Soc., 18, 35-39 (1943) · Zbl 0028.33709
[23] Gasper, G., Summation, transformation, and expansion formulas for bibasic series, Trans. Amer. Math. Soc., 312, 257-277 (1989) · Zbl 0664.33010
[24] Gasper, G.; Rahman, M., Basic Hypergeometric Series, (Rota, G.-C., Encyclopedia of Mathematics and its Applications, Vol. 35 (1990), Cambridge Univ. Press: Cambridge Univ. Press Cambridge) · Zbl 0695.33001
[25] Gessel, I.; Stanton, D., Applications of \(q\)-Lagrange inversion to basic hypergeometric series, Trans. Amer. Math. Soc., 277, 173-201 (1983) · Zbl 0513.33001
[26] Gessel, I.; Stanton, D., Another family of \(q\)-Lagrange inversion formulas, Rocky Mountain J. Math., 16, 373-384 (1986) · Zbl 0613.33003
[27] Gustafson, R. A., The Macdonald identities for affine root systems of classical type and hypergeometric series very well-poised on semi-simple Lie algebras, (Thakare, N. K., Ramanujan Internat. Symp. on Analysis. Ramanujan Internat. Symp. on Analysis, December 26th to 28th, 1987, Pune, India (1989)), 187-224
[28] Holman, W. J., Summation Theorems for hypergeometric series in \(U(n)\), SIAM J. Math. Anal., 11, 523-532 (1980) · Zbl 0454.33010
[29] Holman, W. J.; Biedenharn, L. C.; Louck, J. D., On hypergeometric series well-poised in \(SU (n)\), SIAM J. Math. Anal., 7, 529-541 (1976) · Zbl 0329.33013
[30] Horn, J., Ueber die Convergenz der hypergeometrische Reihen zweier and dreier Veränderlichen, Math. Ann., 34, 544-600 (1889) · JFM 21.0449.02
[31] Jackson, F. H., Transformation of \(q\)-series, Messenger Math., 39, 145-153 (1910)
[32] C. Krattenthaler, The major counting of nonintersecting lattic paths and generating functions for tableaux, preprint.; C. Krattenthaler, The major counting of nonintersecting lattic paths and generating functions for tableaux, preprint. · Zbl 0830.05003
[33] Lilly, G. M., The \(C_l\) generalization of Bailey’s transform and Bailey’s lemma, (Ph.D. Thesis (1991), University of Kentucky)
[34] Lilly, G. M.; Milne, S. C., The \(C_l\) Bailey transform and Bailey lemma, Constr. Approx., 9, 473-500 (1993) · Zbl 0805.33019
[35] Mathai, A. M.; Saxena, R. K., Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciencies, (Lecture Notes in Math., Vol. 3458 (1973), Springer: Springer New York) · Zbl 0272.33001
[36] Milne, S. C., An elementary proof of the Macdonald identities for \(A_l^{(1)}\), Adv. Math., 57, 34-70 (1985) · Zbl 0586.33011
[37] Milne, S. C., Basic hypergeometric series very well-poised in \(U(n)\), J. Math. Anal. Appl., 122, 223-256 (1987) · Zbl 0607.33014
[38] Milne, S. C., Multiple \(q\)-series and \(U(n)\) generalizations of Ramanunjan’s \(_1Ψ_1\) sum, (Andrews, G. E.; etal., Ramanujan Revisited (1988), Academic Press: Academic Press New York), 473-524
[39] Milne, S. C., The multidimensional \(_1Ψ_1\) sum and Macdonald identities for \(A_l^{(1)}\), (Ehrenpreis, L.; Gunning, R. C., Theta Functions Bowdoin 1987. Theta Functions Bowdoin 1987, Proc. Symp. Pure Math., Vol. 49 (1989)), 323-359, (Part 2)
[40] S.C. Milne, Balanced \(_3φ_2Un\); S.C. Milne, Balanced \(_3φ_2Un\) · Zbl 0886.33014
[41] S.C. Milne, New Whipple’s transformations for basic hypergeometric series in \(Un\); S.C. Milne, New Whipple’s transformations for basic hypergeometric series in \(Un\) · Zbl 0809.33010
[42] S.C. Milne, A \(Un\); S.C. Milne, A \(Un\)
[43] S.C. Milne, An extension of little \(qUn\); S.C. Milne, An extension of little \(qUn\)
[44] S.C. Milne, Iterated mutiple series expansions of basic hypergeometric series very well-poised in \(Un\); S.C. Milne, Iterated mutiple series expansions of basic hypergeometric series very well-poised in \(Un\) · Zbl 0607.33014
[45] Milne, S. C.; Lilly, G. M., The \(A_l\) and \(C_l\) Bailey transform and lemma, Bull. Amer. Math. Soc. (NS), 26, 258-263 (1992) · Zbl 0757.33008
[46] Paule, P., Zwei neue Transformationen als elementare anwendungen der \(q\)-Vandermonde formel, (Ph.D. Thesis (1982), University of Vienna)
[47] Paule, P., On identities of the Rogers-Ramanujan type, J. Math. Anal. Appl., 107, 255-284 (1985) · Zbl 0582.10008
[48] Rogers, L. J., Second memoir on the expansion of certain infinite products, (Proc. London Math. Soc., 25 (1894)), 318-343
[49] Rogers, L. J., Third memoir on the expansion of certain infinite products, (Proc. London Math. Soc., 26 (1895)), 15-32 · JFM 26.0289.01
[50] Rogers, L. J., On two theorems of combinatory analysis and some allied identities, (Proc. London Math. Soc, 16 (1917)), 315-336, 2 · JFM 46.0109.01
[51] Slater, L. J., A new proof of Roger’s transformation of infinite series, (Proc. London Math. Soc, 53 (1951)), 460-475, 2 · Zbl 0044.06102
[52] Slater, L. J., Further identities of the Rogers-Ramanujan type, (Proc. London Math. Soc, 54 (1952)), 147-167, 2 · Zbl 0046.27204
[53] Slater, L. J., Generalized Hypergeometric Functions (1966), Cambridge Univ. Press: Cambridge Univ. Press London and New York · Zbl 0135.28101
[54] Watson, G. N., A new proof of the Rogers-Ramanujan identities, J. London Math. Soc., 4, 4-9 (1929) · JFM 55.0219.09
[55] Whipple, F. J.W., On well-poised series, generalized hypergeometric series having parameters in pairs, each pair with the same sum, (Proc. London Math. Soc., 24 (1924)), 247-263, 2 · JFM 51.0283.03
[56] Whipple, F. J.W., Well-poised series and other generalized hypergeometric series, (Proc. London Math. Soc., 25 (1926)), 525-544, 2 · JFM 52.0365.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.