×

On an Altman type fixed point theorem on convex cones. (English) Zbl 0868.47035

The paper recalls the existing connection of the fixed point theory with the so-called complementarity theory. Given a continuous map \(f:K\to H\) of a closed convex cone \(K\) in a Hilbert space \(H\), the complementarity problem concerns the existence of a point \(u\in K\) such that \(f(u)\) is contained in the dual cone \(K^*\) and \(\langle u,f(u)\rangle=0\). It appears that the solvability of the complementarity problem is equivalent to the existence of zeros of \(f\) (i.e. fixed points of \(T=I-f\)). Thus, results concerning the solvability of the complementarity problem (related to the well-known Hartmann-Stampacchia theorem) yield fixed points. For instance, the author shows that given a contraction \(S\) and a compact map \(T\), the map \(f=S+T: K\to H\) has a fixed point provided \(f(K)\subset K\) and \(K,I-f\) satisfy some auxiliary natural conditions. Some other, even more general results are proved and discussed.

MSC:

47H10 Fixed-point theorems
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47J20 Variational and other types of inequalities involving nonlinear operators (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Altman, A fixed point theorem in Hilbert space , Bull. Acad. Polon. Sci. 5 (1957), 19-22. · Zbl 0077.31902
[2] N.A. Bobylev and M.A. Krasnoselskii, Normal deformations of variational problems , Soviet Math. Dokl. 40 (1990), 141-144. · Zbl 0699.49013
[3] ——–, On bifurcation of the extremals of variational problems , Soviet Math. Dokl. 40 (1991), 420-423. · Zbl 0743.14032
[4] J. Bogin, On strict pseudo-contractions and a fixed point theorem , Technion, Preprint Series T -219, Haifa, Israel, 1974.
[5] D.W. Boyd and J.S.W. Wong, A nonlinear contraction , Proc. Amer. Math. Soc. 20 (1969), 458-464. · Zbl 0175.44903 · doi:10.2307/2035677
[6] F.E. Browder, Nonlinear elliptic boundary value problems and the generalized topological degree , Bull. Amer. Math. Soc. 76 (1970), 999-1005. · Zbl 0201.18401 · doi:10.1090/S0002-9904-1970-12530-7
[7] ——–, Existence theorems for nonlinear partial differential equations , Proc. Sympos. Pure Math. 16 (1970), 1-60. · Zbl 0211.17204
[8] ——–, Nonlinear eigenvalue problems and Galerkin approximations , Bull. Amer. Math. Soc. 74 (1968), 651-656. · Zbl 0162.20302 · doi:10.1090/S0002-9904-1968-11979-2
[9] ——–, Existence theory for boundary value problems for quasilinear elliptic systems with strongly nonlinear lower order terms , Proc. Sympos. Pure Math. 23 (1973), 269-286. · Zbl 0265.35035
[10] ——–, Fixed point theory and nonlinear problems , Bull. Amer. Math. Soc. 9 (1983), 1-39. · Zbl 0533.47053 · doi:10.1090/S0273-0979-1983-15153-4
[11] C.E. Chidume, Iterative approximation of fixed point of Lipschitzian strictly pseudo-contractive mappings , Proc. Amer. Math. Soc. 99 (1987), 283-288. · Zbl 0646.47037 · doi:10.2307/2046626
[12] I. Ciorǎnescu, Geometry of Banach spaces, duality mappings and nonlinear problems , Kluwer Academic Publishers, Boston, 1990. · Zbl 0712.47043
[13] R.W. Cottle, Complementarity and variational problems , Symposia Math. 19 (1976), 177-208. · Zbl 0349.90083
[14] J.A. Gatica, Fixed point theorems for \(k\)-set contractions and pseudo-contractive mappings , J. Math. Anal. Appl. 46 (1974), 555-564. · Zbl 0277.47035 · doi:10.1016/0022-247X(74)90262-5
[15] J.A. Gatica and W.A. Kirk, Fixed point theorems for Lipschitzian pseudo-contractive mappings , Proc. Amer. Math. Soc. 36 (1972), 111-115. · Zbl 0254.47076 · doi:10.2307/2039045
[16] ——–, Fixed point theorems for contraction mappings with applications to nonexpansive and pseudo-contractive mappings , Rocky Mountain J. Math. 4 (1974), 69-79. · Zbl 0277.47034 · doi:10.1216/RMJ-1974-4-1-69
[17] P. Hess, On nonlinear mappings of monotone type homotopic to odd operators , J. Func. Anal. 11 (1972), 138-167. · Zbl 0244.47045 · doi:10.1016/0022-1236(72)90084-5
[18] R.B. Holmes, Geometrical functional analysis and its applications , Springer-Verlag, New York-Berlin, 1975. · Zbl 0336.46001
[19] G. Isac, Problèmes de complémentarité (En dimension infinie), Mincours , Publ. Dép Math. Univ. Limoges, France, 1985. · Zbl 0621.47053
[20] ——–, Fixed point theory, coincidence equations on convex cones and complementarity problem , Contemp. Math. 72 (1988), 139-155. · Zbl 0672.47040
[21] W.A. Kirk, A fixed point theorem for local pseudo-contraction in uniformly convex spaces , Manuscripta Math. 30 (1979), 89-102. · Zbl 0422.47032 · doi:10.1007/BF01305991
[22] W.A. Kirk and R. Schönberg, Some results on pseudo-contractive mappings , Pacific J. Math. 71 (1977), 89-100. · Zbl 0362.47023 · doi:10.2140/pjm.1977.71.89
[23] M. Krasnoselskii, Two remarks on the method of successive approximations , Uspehi Math. Nauk 10 (1955), 123-127.
[24] M.A. Krasnoselskii, N.A. Bobylev and E.M. Muhamadiev, On a scheme for studying degenerate extremals of functionals in the classical calculus of variations , Soviet Math. Dokl. 19 (1978), 634-638. · Zbl 0424.49003
[25] C. Morales, Pseudo-contractive mappings and the Leray-Schauder boundary condition , Comment. Math. Univ. Carolinae 20 (1979), 745-756. · Zbl 0429.47021
[26] ——–, On the fixed point theory for local \(k\)-pseudo-contractions , Proc. Amer. Math. Soc. 81 (1981), 71-74. · Zbl 0479.47050 · doi:10.2307/2043988
[27] J.J. Moré, Coercivity conditions in nonlinear complementarity problems , SIAM Rev. 16 (1974), 1-16. JSTOR: · Zbl 0253.65033 · doi:10.1137/1016001
[28] D. Pascali and S. Sburlan, Nonlinear mappings of monotone type , Ed. Acad. Buc. Romania and Noordhoff Inter. Publ., 1978. · Zbl 0423.47021
[29] W.V. Petryshyn, Antipodes theorem for \(A\)-proper mappings and its applications to mappings of the modified type \((S)\) or \((S)_+\) and to mappings with the \(pm\) property , J. Funct. Anal. 7 (1971), 165-221. · Zbl 0218.47029 · doi:10.1016/0022-1236(71)90052-8
[30] J. Reinermann and R. Schöneberg, Some results and problems in the fixed point theory for nonexpansive and pseudo-contractive mappings in Hilbert space , Academic Press, Seminar proceedings, Dalhousie University, Halifax, N.S., Canada, 1975. · Zbl 0375.47034
[31] R. Schöneberg, On the structure of fixed point sets of pseudo-contractive mappings , Comment. Math. Univ. Carolinae 18 (1977), 299-310. · Zbl 0358.47034
[32] M. Shinbrot, A fixed point theorem and some applications , Arch. Rational Mech. Anal. 17 (1965), 255-271. · Zbl 0156.38502 · doi:10.1007/BF00282289
[33] I.V. Skrypnik, Higher-order nonlinear elliptic equations , Nauk. Dumka, Kiev, 1973. · Zbl 0276.35043
[34] V.H. Weber, \(\phi\)-asymptotisches spectrum and surjektivitätssätze von Fredholm type für nichtlineare operatoren mit anwendungen , Math. Nachr. 117 (1984), 7-35. · Zbl 0605.47055 · doi:10.1002/mana.3211170102
[35] M. Willem, Perturbations non-linéaires d’opérateurs linéaires dont le noyau est de dimension infinie et applications , Ph.D. thesis, Univ. Catholique de Louvain, Fac. Sci. Appliquées, 1979.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.