×

Topological sigma model and Donaldson-type invariants in Gromov theory. (English) Zbl 0864.53032

The main purpose of the paper is to establish Donaldson-type invariants (coming from Donaldson’s gauge theory) in Gromov’s theory of the moduli space of pseudo-holomorphic curves. The author introduces two Donaldson-type invariants: \(\Phi\) counting the number of holomorphic curves \(\Phi_{(A,J,\omega)} (\alpha_1, \dots, \alpha_n)= \sum_im(C_i)\), and the invariant \(\widetilde\Phi\) counting the number of perturbed holomorphic maps \(f:S^2\to (V,\omega)\) (which fulfill the perturbed equation \(\overline \partial_Jf=g)\) with marked points. He gives a rigorous proof of the existence of such invariants, finds the most important properties of them and shows their most interesting applications to the geometry of Gross 3-folds and quantum cohomology rings. He proves that Gross 3-folds are diffeomorphic, have the same homotopy class of associated, almost complex structures up to diffeomorphism, but they are not symplectic deformation equivalent. Also he proves that there are no diffeomorphisms between Gross 3-folds which induce an isomorphism on the quantum cohomology ring.

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] K. Brown, Cohomology of Groups , Grad. Texts in Math., vol. 87, Springer-Verlag, New York, 1982. · Zbl 0584.20036
[2] P. Conner and F. Floyd, Differentiable Periodic Maps , Ergeb. Math. Grenzgeb., vol. 33, Academic Press, New York, 1964. · Zbl 0125.40103
[3] I. Dolgachev and M. Gross, Elliptic threefolds I, Ogg-Shafarevich theory , J. Algebraic Geom. 3 (1994), no. 1, 39-80. · Zbl 0803.14021
[4] S. K. Donaldson and P. Kronheimer, The Geometry of Four-Manifolds , Oxford Math. Monographs, Oxford Univ. Press, New York, 1990. · Zbl 0820.57002
[5] A. Floer, Symplectic fixed points and holomorphic spheres , Comm. Math. Phys. 120 (1989), no. 4, 575-611. · Zbl 0755.58022 · doi:10.1007/BF01260388
[6] M. Gromov, Pseudoholomorphic curves in symplectic manifolds , Invent. Math. 82 (1985), no. 2, 307-347. · Zbl 0592.53025 · doi:10.1007/BF01388806
[7] M. Gross, private communication. · Zbl 0167.29403
[8] M. Gross, The deformation space of Calabi-Yau \(n\)-folds with canonical singularities can be obstructed , · Zbl 0921.14027
[9] D. McDuff, Examples of symplectic structures , Invent. Math. 89 (1987), no. 1, 13-36. · Zbl 0625.53040 · doi:10.1007/BF01404672
[10] D. McDuff, Elliptic methods in symplectic geometry , Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 311-358. · Zbl 0723.53018 · doi:10.1090/S0273-0979-1990-15928-2
[11] D. McDuff, The structure of rational and ruled symplectic \(4\)-manifolds , J. Amer. Math. Soc. 3 (1990), no. 3, 679-712. JSTOR: · Zbl 0723.53019 · doi:10.2307/1990934
[12] D. McDuff, Lectures on symplectic \(4\)-manifolds , CIMPA Summer School, Nice 1992,
[13] D. McDuff, Symplectic manifolds with contact type boundaries , Invent. Math. 103 (1991), no. 3, 651-671. · Zbl 0719.53015 · doi:10.1007/BF01239530
[14] D. McDuff and D. Salamon, \(J\)-holomorphic curves and quantum cohomology , University Lecture Series, vol. 6, American Mathematical Society, Providence, RI, 1994. · Zbl 0809.53002
[15] J. Milne, Étale cohomology , Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. · Zbl 0433.14012
[16] D. Morrison, Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians , J. Amer. Math. Soc. 6 (1993), no. 1, 223-247. JSTOR: · Zbl 0843.14005 · doi:10.1090/S0894-0347-1993-1179538-2
[17] T. Oda, Convex bodies and algebraic geometry , Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 15, Springer-Verlag, Berlin, 1988. · Zbl 0628.52002
[18] T. Parker and J. Wolfson, A compactness theorem for Gromov’s moduli space ,
[19] M. Reid, Decomposition of toric morphisms , Arithmetic and Geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser, Boston, 1983, pp. 395-418. · Zbl 0571.14020
[20] Y. Ruan, Symplectic topology on algebraic \(3\)-folds , J. Differential Geom. 39 (1994), no. 1, 215-227. · Zbl 0810.53021
[21] Y. Ruan, Symplectic topology and extremal rays , Geom. Funct. Anal. 3 (1993), no. 4, 395-430. · Zbl 0806.53032 · doi:10.1007/BF01896262
[22] Y. Ruan, Symplectic topology and complex surfaces , preprint, Mathematical Sciences Research Institute. · Zbl 0934.53049
[23] Y. Ruan and G. Tian, A mathematical theory of quantum cohomology , Math. Res. Lett. 1 (1994), no. 2, 269-278. · Zbl 0860.58006 · doi:10.4310/MRL.1994.v1.n2.a15
[24] C. Vafa, Topological mirrors and quantum rings , Essays on Mirror Manifolds, International Press, Hong Kong, 1992, pp. 96-119. · Zbl 0827.58073
[25] E. Witten, Topological sigma models , Comm. Math. Phys. 118 (1988), no. 3, 411-449. · Zbl 0674.58047 · doi:10.1007/BF01466725
[26] P. Wilson, The Kähler cone on Calabi-Yau threefolds , Invent. Math. 107 (1992), no. 3, 561-583. · Zbl 0766.14035 · doi:10.1007/BF01231902
[27] J. Wolfson, Gromov’s compactness of pseudo-holomorphic curves and symplectic geometry , J. Differential Geom. 28 (1988), no. 3, 383-405. · Zbl 0661.53024
[28] R. Ye, Gromov’s compactness theorem for pseudo-holomorphic curves , Trans. Amer. Math. Soc. 342 (1994), no. 2, 671-694. JSTOR: · Zbl 0810.53024 · doi:10.2307/2154647
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.