×

Periods and duality of \(p\)-adic Barsotti-Tate groups. (English) Zbl 0864.14030

Let \(k\) be a perfect field of characteristic \(p\neq 0\), \(A=W(k)\) the ring of Witt vectors with components in \(k\), \(K\) the field of fractions of \(A\), \(C\) the completion of the algebraic closure of \(K\), \(A_C\) the ring of integers of \(C\), \(G\) a \(p\)-divisible group \((BT\)-group) over \(A\). In this paper, it is developed a new method for computing the periods of the elements of \(H^1_{dR}(G)\) against the elements of \(T(G)\), the Tate module of \(G\): more precisely it is defined a pairing \({\mathfrak p}:H^1_{dR}(G) \otimes K\times V_G(A_C) \to\text{biv} {\mathcal R}\), where \(V_G(A_C) \supset T(G)\) is the Tate space of \(G\) and \(\text{biv} {\mathcal R}\) (cf. 6.1) denotes the \(K\)-module of Witt-bivectors over the ring \({\mathcal R}=\varprojlim (A_C/p A_C \leftarrow A_C/pA_C\leftarrow \cdots)\), where the inverse limit is taken with respect to the elevation to the \(p\)-th power. The construction is based on Witt realization of \(BT\)-groups [cf. M. Candilera and V. Cristante in: Barsotti Sympos. algebraic Geometry, Abano Terme 1991, Perspect. Math. 15, 65-123 (1994; Zbl 0838.14038)] and allows the comparison of some of the theories used to calculate periods; in particular, the results of the present paper are compared with those obtained by the method of integration of differential forms of the second kind as introduced by R. F. Coleman [Invent. Math. 78, 351-379 (1984; Zbl 0572.14024)] and later by P. Colmez [Math. Ann. 292, No. 4, 629-644 (1992; Zbl 0793.14033)] and it is compared also with the results by J.-M. Fontaine [“Groupes \(p\)-divisibles sur les corps locaux”, Astérisque 47-48 (1977; Zbl 0377.14009)]; the conclusion is that all these methods essentially coincide (cf. remarks 3.13 and 3.14). It is also analyzed the relation between \({\mathfrak p}\) and the pairing of J. Tate [Proc. Conf. local Fields, NUFFIC Summer School Driebergen 1966, 158-187 (1967; Zbl 0157.27601)] and a new proof of the existence of Hodge-Tate decomposition for \(H^1_{dR}(G)\) is given. The authors remark that the image of their pairing \({\mathfrak p}\) and then the periods, are contained in \(\text{biv} {\mathcal R}\), which is a \(K\)-module but not a ring; to get a ring they put a suitable topology on this module and then take the completion. The ring obtained in this way is denoted by \(\text{Biv} {\mathcal R}\). Since this ring is new the authors take care to explain its relations with the rings \(B^+\) and \(B^+_{DR}\) defined by J.-M. Fontaine [Ann. Math., II. Ser. 115, 529-577 (1982; Zbl 0544.14016)] and, as a final result, they prove that \(\text{biv} {\mathcal R} \subset B^+ \subset \text{Biv} {\mathcal R} \subset B^+_{DR}\), and that \(B^+_{DR}\) is the completion of the localization at a suitable ideal of \(\text{Biv} {\mathcal R}\) (cf. remark 7.12).

MSC:

14L05 Formal groups, \(p\)-divisible groups
13K05 Witt vectors and related rings (MSC2000)
14F30 \(p\)-adic cohomology, crystalline cohomology
PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] R.F. Coleman , Hodge-Tate periods and p-adic abelian integrals . Invent. Math. 78 ( 1984 ), 351 - 379 . MR 768985 | Zbl 0572.14024 · Zbl 0572.14024 · doi:10.1007/BF01388442
[2] P Colmez , Périodes p-adiques des variétés abéliennes. Math . Ann. 292 ( 1992 ), 629 - 644 . MR 1157318 | Zbl 0793.14033 · Zbl 0793.14033 · doi:10.1007/BF01444640
[3] J.-M. Fontaine , Groupes p-divisibles sur les Corps Locaux . Astérisque 47 - 48 ( 1977 ). MR 498610 | Zbl 0377.14009 · Zbl 0377.14009
[4] J.-M. Fontaine , Modules Galoisiens, Module filtrés et Anneaux de Barsotti-Tate. In: ”Journées de Gèométrie Algébrique de Rennes” Astérisque 65 ( 1979 ), 155 - 187 . MR 563472 | Zbl 0429.14016 · Zbl 0429.14016
[5] J.-M. Fontaine , Sur certaines types de représentations p-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate . Annals of Math. 115 ( 1982 ), 529 - 577 . MR 657238 | Zbl 0544.14016 · Zbl 0544.14016 · doi:10.2307/2007012
[6] J.-M. Fontaine , Formes Différentielles et Modules de Tate des Variétés Abéliennes sur les Corps Locaux . Invent. Math. 65 ( 1982 ), 379 - 409 . MR 643559 | Zbl 0502.14015 · Zbl 0502.14015 · doi:10.1007/BF01396625
[7] I. Barsotti , Metodi Analitici per Varietà Abeliane in Caratteristica Positiva . Ann. Scuola Norm. Sup. Pisa, Cl. Sci. 18 ( 1964 ) 1 - 25 , 19 ( 1965 ) 277 - 330 , 19 ( 1965 ) 481 - 512 , 20 ( 1966 ) 101 - 137 , 20 ( 1966 ) 331 - 365 . Numdam · Zbl 0121.16104
[8] B. Mazur - W. Messing , Universal Extension and one Dimensional Crystalline Cohomology . LNM 370 Springer , Berlin , 1974 . MR 374150 | Zbl 0301.14016 · Zbl 0301.14016 · doi:10.1007/BFb0061628
[9] J. Tate , p-Divisible Groups. In: Proc. Conf. on Local Fields, NUFFIC Summer School , Driebergen , Springer 1967 , 158 - 187 . MR 231827 | Zbl 0157.27601 · Zbl 0157.27601
[10] M. Candilera - V. Cristante , Witt realization of p-adic Barsotti-Tate groups, in ”Barsotti Symposium in Algebraic Geometry” pp. 65 - 123 . Perspectives in Mathematics , 15 , Academic Press , 1994 . MR 1307393 | Zbl 0838.14038 · Zbl 0838.14038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.