×

Asymptotic behavior of Picard canonical integrals. (English. Russian original) Zbl 0859.31004

Sib. Math. J. 36, No. 1, 33-42 (1995); translation from Sib. Mat. Zh. 36, No. 1, 37-46 (1995).
Picard canonical integral is a generalization of the canonical product defined by E. Picard [C. R. Acad. Sci., Paris 92, 690-692 (1881; JFM 13.0316.01)]. It is shown that the Picard canonical integral is a subharmonic function in the unit ball (in \(\mathbb{R}^n\)) and the asymptotic growth of the Picard canonical integral is studied.
Reviewer: M.Dont (Praha)

MSC:

31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
31B10 Integral representations, integral operators, integral equations methods in higher dimensions

Citations:

JFM 13.0316.01
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] B. Ya. Levin, Distribution of Roots of Entire Functions [in Russian], Gostekhizdat, Moscow (1956). · Zbl 0111.07401
[2] A. A. Gol’dberg, B. Ya. Levin, and I. V. Ostrovskii, ”Entire and meromorphic functions,” in: Contemporary Problems of Mathematics. Fundamental Trends. Vol. 85 [in Russian], VINITI, Moscow, 1990, pp. 5–186 (Itogi Nauki i Tekhniki).
[3] R. S. Galoyan, ”On asymptotic properties of the function{\(\pi\)} p(z; zk),” Dokl. Akad. Nauk ArmSSR,59, No. 2, 65–71 (1974). · Zbl 0303.30026
[4] M. A. Girnyk, ”On asymptotic properties of certain canonical products,” Sibirsk. Mat. Zh.,15, No. 5, 1036–1048 (1974).
[5] M. A. Girnyk, ”On asymptotic properties of certain canonical products. II,” Sibirsk. Mat. Zh.,17, No. 5, 967–985 (1976). · Zbl 0371.30022
[6] V. S. Azarin, ”On subharmonic functions of totally regular growth on the whole space,” Zap. Khar’kov. Mat. Obshch. i Mekh.-Mat. Fakul’teta Khar’kov. Univ., (1961),28, Ser. 4, pp. 128–148.
[7] V. S. Azarin, ”On asymptotic behavior of subharmonic functions of finite order,” Mat. Sb.,108, No. 2, 147–169 (1979).
[8] W. K. Hayman and P. B. Kennedy, Subharmonic Functions. Vol. 1 [Russian translation], Mir, Moscow (1980). · Zbl 0521.31001
[9] E. Picard, ”Sur la décomposition en fasteurs primaires des fonctions uniformes ayant une ligne de points singuliers essentiels,” C. R. Acad. Sci. Paris Sér. I Math.,92, 690–692 (1981). · JFM 13.0316.01
[10] I. P. Natanson, Theory of Functions of a Real Variable [in Russian], Gostekhizdat, Moscow (1957). · Zbl 0084.06501
[11] N. S. Landkof, Fundamentals of Modern Potential Theory [in Russian], Nauka, Moscow (1966).
[12] A. N. Fridman, ”Estimates from below for subharmonic functions,” submitted to VINITI on June 22, 1979, No. 2439-79.
[13] V. Ya. Éiderman, ”Exceptional sets in asymptotic estimates for subharmonic functions,” Sibirsk. Mat. Zh.,29, No. 6, 185–196 (1988).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.