×

Noncoercive boundary value problems for the Laplace equation with a spectral parameter. (English) Zbl 0857.35095

Summary: We find conditions that guarantee that irregular boundary value problems for second order elliptic differential-operator equations in an interval are coercive with a defect and Fredholm; compactness of a resolvent and estimations by spectral parameter; completeness of root functions. We apply this result to find some algebraic conditions that guarantee that irregular boundary value problems for elliptic partial differential equations of the second order in cylindrical domains have the same properties. Apparently this is the first paper where the regularity of an elliptic boundary value problem is not satisfied on a manifold of the dimension equal to the dimension of the boundary. Nevertheless, the problem is Fredholm and the resolvent is compact. It is interesting to note that the considered boundary value problems for elliptic equations in a cylinder with separating variables are noncoercive.

MSC:

35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs
35J25 Boundary value problems for second-order elliptic equations
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Agmon, S.,On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math.15 (1962), 119–147. · Zbl 0109.32701 · doi:10.1002/cpa.3160150203
[2] Agmon, S. and L. Nirenberg,Properties of solutions of ordinary differential equations in Banach spaces, Comm. Pure Appl. Math.16 (1963), 121–239. · Zbl 0117.10001 · doi:10.1002/cpa.3160160204
[3] Agranovich, M. S. and M. I. Vishik,Elliptic problems with a parameter and parabolic problems of general type, Uspekhi Mat. Nauk19 (1964), no. 3, 53–161. · Zbl 0137.29602
[4] Besov, O. V., V. P. Il’in, and S. M. Nikolskii, ”Integral Representations of Functions and Embedding Theorems, v.I,” Halsted Press, New York, 1978.
[5] Dunford, N. and J. T. Schwartz, ”Linear Operators. Part II. Spectral Theory,” Interscience, New York, 1963. · Zbl 0128.34803
[6] Fattorini, H. O., ”Second Order Linear Differential Equations in Banach Spaces,” North-Holland, Amsterdam, 1985. · Zbl 0564.34063
[7] Grisvard, P.,Characterization de quelques espaces d’interpolation, Arch. Rat. Mech. Anal.25 (1967), 40–63. · Zbl 0187.05901 · doi:10.1007/BF00281421
[8] Geymonat, G. and P. Grisvard,Alcuni risltati di teoria spettralue per i problemi ai limiti lineari elliptice, Rend. Semin. Mat. Univ. Padova38 (1967), 121–173. · Zbl 0182.18503
[9] Goldstein, J. A., R. deLaubenbels, and J. T. Sandefur,Regularized semigroups, iterated Cauchy problems and equipartition of energy, Mh. Math.115 (1993), 47–66. · Zbl 0784.34046 · doi:10.1007/BF01311210
[10] Kato, T., ”Perturbation Theory for Linear Operators,” Springer-Verlag New York, Inc., 1966. · Zbl 0148.12601
[11] Krein, S. G., ”Linear Differential Equations in Banach Space,” Providence, 1971. · Zbl 0236.47034
[12] Krein, S. G., ”Linear Equations in Banach Space,” Birkhauser, 1983. · Zbl 0599.45002
[13] Komatsu, H.,Fractional powers of operators II. Interpolation spaces, Pac. J. Math.21 (1967), 89–111. · Zbl 0168.10702
[14] de Laubenfels, R.,Incomplete iterated Cauchy problems, J. Math. Anal. and Appl.168(2) (1992), 552–579. · Zbl 0768.34037 · doi:10.1016/0022-247X(92)90180-L
[15] Lions, J. L. and E. Magenes, ”Non-Homogeneous Boundary Value Problems and Applications,” Springer-Verlag, Berlin, 1972. · Zbl 0227.35001
[16] Pazy, A., ”Semigroups of Linear Operators and Applications to Partial Differential Equations,” Springer-Verlag, Berlin, 1983. · Zbl 0516.47023
[17] Tanabe, H., ”Equations of Evolution,” Pitman, London, 1979. · Zbl 0417.35003
[18] Treibel, H., ”Interpolation Theory. Function Spaces. Differential Operators,” North-Holland, Amsterdam, 1978.
[19] Yakubov, S. Ya., ”Linear Differential-Operator Equations and Their Applications,” Elm, Baku, 1985. · Zbl 0622.34001
[20] Yakubov, S. Ya., ”Completeness of Root Functions of Regular Differential Operators,” Longman, Scientific and Technical, New York, 1984.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.