×

Likelihood and linkage: From Fisher to the future. (English) Zbl 0856.62101

Summary: Genetic epidemiology is almost unique among the sciences in that computation of a likelihood function is the accepted approach to statistical inference. In the context of genetic linkage analysis, in which genes are mapped by analysing the dependence in inheritance of different traits, the use of likelihood dates back to the early work of Fisher and Haldane, and has seldom been seriously challenged. After introducing the underlying genetic concepts, this paper reviews the history of the statistics of linkage analysis, from 1913 to 1980, and its dependence on the development of likelihood inference.
With the sudden increase in genetic marker data deriving from new DNA technology, the potential for mapping the genes contributing to complex genetic traits is markedly increased, but the difficulties of likelihood analysis are also multiplied. With increasing complexity of models and the desire to make maximum use of available data on individuals not closely related, the likelihood approach to human linkage analysis faces new computational and methodological challenges. New methods are meeting some of these challenges; likelihood and linkage seem as closely interwoven as ever.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62-03 History of statistics
01A60 History of mathematics in the 20th century
92D10 Genetics and epigenetics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Blossey, H. (1993). The Poisson clumping heuristic and the survival of genome in small pedigrees. Ph.D. dissertation, Dept. Statistics, Univ. Washington.
[2] Botstein, D., White, R. L., Skolnick, M. H. and Davis, R. W. (1980). Construction of a linkage map in man using restriction fragment poly morphism. American Journal of Human Genetics 32 314-331.
[3] Cottingham, R. W., Idury, R. M. and Schäffer, A. A. (1993). Faster sequential genetic linkage computations. American Journal of Human Genetics 53 252-263.
[4] Donnelly, K. P. (1983). The probability that related individuals share some section of the genome identical by descent. Theoret. Population Biol. 23 34-64. · Zbl 0521.92011 · doi:10.1016/0040-5809(83)90004-7
[5] Elston, R. C. and Stewart, J. (1971). A general model for the genetic analysis of pedigree data. Human Heredity 21 523-542. Fisher, R. A. (1922a). On the mathematical foundations of theoretical statistics. Philos. Trans. Roy. Soc. London Ser. A 222 309-368. Fisher, R. A. (1922b). On the sy stematic location of genes by means of crossover observations. American Naturalist 56 406-411.
[6] Fisher, R. A. (1934). The amount of information supplied by records of families as a function of the linkage in the population sampled. Annals of Eugenics 6 66-70. · JFM 62.1374.01
[7] Fisher, R. A. (1935). The detection of linkage with ”dominant” abnormalities. Annals of Eugenics 6 187-201. · JFM 62.1374.03
[8] Fisher, R. A. (1936). Heterogeneity of linkage data for Friedrich’s ataxia and the spontaneous antigens. Annals of Eugenics 7 17-21.
[9] Fisher, R. A. (1947). The Rhesus factor: a study in scientific method. Amer. Sci. 35 95-102, 113.
[10] Fisher, R. A. (1949). The Theory of Inbreeding. Oliver & Boy d, Edinburgh. · Zbl 0040.22603
[11] Gey er, C. J. (1991). Reweighting Monte Carlo mixtures. Technical Report 568, School of Statistics, Univ. Minnesota.
[12] Haldane, J. B. S. (1919). The combination of linkage values and the calculation of distances between the loci of linked factors. Journal of Genetics 8 299-309.
[13] Haldane, J. B. S. (1934). Methods for the detection of autosomal linkage in man. Annals of Eugenics 6 26-65. · JFM 62.1373.04
[14] Haldane, J. B. S. and Smith, C. A. B. (1947). A new estimate of the likage between the genes for colour-blindness and haemophilia in man. Annals of Eugenics 14 10-31. · Zbl 0030.20903
[15] Hammersley, J. M. and Handscomb, D. C. (1964). Monte Carlo Methods. Methuen, London. · Zbl 0121.35503
[16] Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 97-109. · Zbl 0219.65008 · doi:10.1093/biomet/57.1.97
[17] Irwin, M., Cox, N. and Kong, A. (1994). Sequential imputation for multilocus linkage analysis. Proc. Nat. Acad. Sci. USA 91 11,684-11,688.
[18] Jeffrey s, H. (1961). The Theory of Probability, 3rd ed. Clarendon, Oxford.
[19] Kong, A., Liu, J. and Wong, W. H. (1994). Sequential imputations and Bayesian missing data problems. J. Amer. Statist. Assoc. 89 278-288. · Zbl 0800.62166 · doi:10.2307/2291224
[20] Lander, E. S. and Green, P. (1987). Construction of multilocus linkage maps in humans. Proc. Nat. Acad. Sci. USA 84 2363-2367.
[21] Lange, K. and Sobel, E. (1991). A random walk method for computing genetic location scores. American Journal of Human Genetics 49 1320-1334.
[22] Lin, S. (1995). A scheme for constructing an irreducible Markov chain for pedigree data. Biometrics 51 318-322. JSTOR: · Zbl 0825.92091 · doi:10.2307/2533337
[23] Lin, S., Thompson, E. A. and Wijsman, E. M. (1994). A faster mixing algorithm for Hastings- Metropolis updates on complex pedigrees. Annals of Human Genetics 58 343-357.
[24] Lin, S. and Wijsman, E. M. (1994). Monte Carlo multipoint linkage analysis. American Journal of Human Genetics 55 A40.
[25] Mendel, G. (1866). Experiments in plant hy bridisation. [Mendel’s original paper in English translation, with a commentary by R. A. Fisher, published by Oliver and Boy d, Edinburgh, 1965.]
[26] Morton, N. E. (1955). Sequential tests for the detection of linkage. American Journal of Human Genetics 7 277-318. Murray, J. C., Buetow, K. H., Weber, J. L., Ludwigson, S., Scherpier-Heddema, T., Manion, F., Quillen, J., Sheffield, V. C., Sunden, S., Duy k, G. M., Weissenbach, J., Gy apay, G., Dib, C., Morrissette, J., Lathrop, G. M., Vignal, A., White, R., Matsunami, N.,
[27] set, J., Cohen, D. and Cann, H. (1994). A comprehensive human linkage map with centimorgan density. Science 265 2049-2064. Nakura, J., Wijsman, E. M., Miki, T., Kamino, K., Yu, C-E, Oshima, J., Fukuchi, K., Weber, J. L., Piussan, C., Malaragno, M. I., Epstein, C. J., Scappaticci, S., Fraccaro, M., Matsumura, T., Murano, S., Yoshida, S., Fujiwara, Y., Saida, T., Ogihara, T.,
[28] Martin, G. M. and Schellenberg, G. D. (1994). Homozy gosity mapping of the Werner’s sy ndrome locus (WRN). Genomics 23 600-608. Nelson, S. F., McCusker, J. H., Sander, M. A., Kee, Y., Modrish, P. and Brown, P. O.
[29] . Genomic mismatch scanning; a new approach to genetic linkage mapping. Nature Genetics 4 11-18.
[30] Ott, J. (1979). Maximum likelihood estimation by counting methods under poly genic and mixed models in human pedigrees. American Journal of Human Genetics 31 161-175.
[31] Ott, J. (1991). Analy sis of Human Genetic Linkage, 2nd ed. Johns Hopkins Univ. Press. Palmer, S. E., Dale, D. C., Livingston, R. J., Wijsman, E. M. and Stephens, K.
[32] . Autosomal dominant cy clic hematopoiesis: exclusion of linkage to the major hematopoietic regulatory gene cluster on chromosome 5. Human Genetics 93 195-197.
[33] Quinn, E. V. and Prest, J. M. (1987). Dear Miss Nightingale (A Selection of Benjamin Jowett’s Letters 1860-1893). Clarendon, Oxford.
[34] Smith, C. A. B. (1953). Detection of linkage in human genetics. J. Roy. Statist. Soc. Ser. B 15 153-192. · Zbl 0052.15603
[35] Sturtevant, A. H. (1913). The linear association of six sex-linked factors in Drosophila, as shown by their mode of association. Journal of Experimental Zoology 14 43-59. Thompson, E. A. (1994a). Monte Carlo likelihood in linkage analysis. Statist. Sci. 9 355-366. Thompson, E. A. (1994b). Monte Carlo estimation of multilocus autozy gosity probabilities. In Proceedings of the 1994 Interface Conference (J. Sall and A. Lehman, eds.) 498-506. Interface Foundation of North America, Fairfax Station, VA.
[36] Thompson, E. A. and Guo, S. W. (1991). Evaluation of likelihood ratios for complex genetic models. IMA J. Math. Appl. Med. Biol. 8 149-169. · Zbl 0739.62082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.