×

Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent. (English) Zbl 0839.35014

The authors study the semilinear equation \(-\Delta u= u^{(n+ 2)/(n- 2)}\) in \(\Omega\backslash Z\), where \(\Omega\) is an open domain in \(\mathbb{R}^n\) and \(Z\) a closed set. Their aim is to extend the results of Caffarelli, Gidas and Spruck who studied the equation on \(\mathbb{R}^n\backslash \{0\}\). Other nonlinearities \(f(u)\), that are close to this critical \(u^{(n+ 2)/(n- 2)}\), are also considered. The first result they prove is the following. If \(\text{Cap}(Z)= 0\) then positive solutions satisfy \(u(x)\leq Cd(x, Z)^{-(n- 2)/2}\) on \(B_R\) if \(B_{2R}\subset \Omega\). They claim that their approach will provide a simpler way to obtain the asymptotic result of Caffarelli, Gidas and Spruck. A consecutive paper in this direction is announced.
Reviewer: G.H.Sweers (Delft)

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35J60 Nonlinear elliptic equations
35B45 A priori estimates in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. R. Adams and N. G. Meyers, Bessel potentials. Inclusion relations among classes of exceptional sets , Indiana Univ. Math. J. 22 (1972/73), 873-905. · Zbl 0285.31007 · doi:10.1512/iumj.1973.22.22074
[2] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents , Comm. Pure Appl. Math. 36 (1983), no. 4, 437-477. · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[3] L. A. Caffarelli, B. Gidas, and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth , Comm. Pure Appl. Math. 42 (1989), no. 3, 271-297. · Zbl 0702.35085 · doi:10.1002/cpa.3160420304
[4] E. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations , Duke Math. J. 63 (1991), no. 3, 615-622. · Zbl 0768.35025 · doi:10.1215/S0012-7094-91-06325-8
[5] D. G. de Figueiredo, P. L. Lions, and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations , J. Math. Pures Appl. (9) 61 (1982), no. 1, 41-63. · Zbl 0452.35030
[6] B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \(\mathbf R\spn\) , Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York, 1981, pp. 369-402. · Zbl 0469.35052
[7] B. Gidas and J. Spruck, Apriori bounds for positive solutions of nonlinear elliptic equations , Comm. Pure Appl. Math. 34 (1981), no. 4, 525-598. · Zbl 0465.35003 · doi:10.1002/cpa.3160340406
[8] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations , Comm. Partial Differential Equations 6 (1981), no. 8, 883-901. · Zbl 0462.35041 · doi:10.1080/03605308108820196
[9] Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent , Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), no. 2, 159-174. · Zbl 0729.35014
[10] P. Pollack, Compactness results for complete metrics of constant positive scalar curvature on subdomains of \(S^n\) , to appear in Indiana Univ. Math. J. · Zbl 0794.53025 · doi:10.1512/iumj.1993.42.42066
[11] R. Schoen, The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation , Comm. Pure Appl. Math. 41 (1988), no. 3, 317-392. · Zbl 0674.35027 · doi:10.1002/cpa.3160410305
[12] R. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics , Topics in calculus of variations (Montecatini Terme, 1987), Lecture Notes in Math., vol. 1365, Springer, Berlin, 1989, pp. 120-154. · Zbl 0702.49038 · doi:10.1007/BFb0089180
[13] R. Schoen, On the number of constant scalar curvature metrics in a conformal class , Differential geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 311-320. · Zbl 0733.53021
[14] R. Schoen and S. T. Yau, Conformally flat manifolds, Kleinian groups and scalar curvature , Invent. Math. 92 (1988), no. 1, 47-71. · Zbl 0658.53038 · doi:10.1007/BF01393992
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.