×

Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents. (English) Zbl 0838.35035

In this interesting paper, the author formulates and proves his concentration-compactness principle at \(\infty\), which can be used instead of the first variational principle of P. L. Lions [Ann. Inst. Henri Poincaré, Anal. Non Lineaire 1, 109-145 (1984; Zbl 0541.49009) and ibid., 223-283 (1984; Zbl 0704.49004)]. Then he gives applications, rich in substance, to some nonlinear elliptic equations: First, to an equation, which originates in differential geometry (the Yamabe problem), using a mountain pass theorem. Second, he reproves known existence theorems for certain equations. In doing so, his approach seems to be simpler and under slightly weaker conditions.
Reviewer: A.Göpfert (Halle)

MSC:

35J60 Nonlinear elliptic equations
49J27 Existence theories for problems in abstract spaces
35J20 Variational methods for second-order elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. P. Garcia Azorero, P. Alonso: Multiplicity of solutions for elliptic problems with critical exponent or with non symmetric term. Trans. Am. Math. Soc.323 (2) (1991) 887–897 · Zbl 0729.35051 · doi:10.2307/2001562
[2] J. P. Garcia Azorero, P. Alonso: On limits of solutions of elliptic problems with nearly critical exponent. Commun in PDE17 (ii & 12) (1992) 2113–2126 · Zbl 0799.35066 · doi:10.1080/03605309208820916
[3] A. Bahri, Yan Yan Li: On a min-max procedure for the existence of a positive solution for certain scalar field equations in \(\mathbb{R}\) N . Revista Mat. Iberoamericana6 (1, 2) (1990) 1–15 · Zbl 0731.35036
[4] A.K. Ben-Naouma, C. Troestler, M. Willem: Extrema problems with critical Sobolev exponents on unbounded domains. Institut de Mathématique Pure et Appliquée. Université Catholique de Louvain (preprint) · Zbl 0851.49004
[5] V. Benci, G. Cerami: Positive solutions of some nonlinear elliptic problems in exterior domains. Arch. Rat. Mech. Anal.99 (1987) 283–300 · Zbl 0635.35036 · doi:10.1007/BF00282048
[6] V. Benci, G. Cerami: Existence of positive solutions of the equation u+a(x)u=u N+2/N in \(\mathbb{R}\) N . J. Funct Anal.88 (1990) 90–117 · Zbl 0705.35042 · doi:10.1016/0022-1236(90)90120-A
[7] G. Bianchi, J. Chabrowski, A. Szulkin: Symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent. Nonlinear Analysis, TMA (to appear) · Zbl 0823.35051
[8] H. Brezis, L. Nirenberg: Positive solutions od nonliner elliptic equations involving critical Sobolev exponent. Commun. Pure Appl. Math.36 (1983) 437–477 · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[9] Cao Daomin: Yamabe problem in \(\mathbb{R}\) n and related problems. Acta Mat. Scientia10(2) (1990) 201–216 · Zbl 0706.49002
[10] Dao-Min Cao: Multiple solutions of a semilinear elliptic equation in \(\mathbb{R}\)N. Ann. Inst. H. Poincaré, Analyse non linéaire10 (6) (1993) 593–604
[11] J. Chabrowski: On entire solutions of the p-Laplacian. Proc. Centre for Maths and its Applications, Australian National University26 (1991) 27–61 · Zbl 0743.58013
[12] I. Ekeland: Nonconvex minimization problems. Bull. Am. Math. Soc.1 (1979) 443–474 · Zbl 0441.49011 · doi:10.1090/S0273-0979-1979-14595-6
[13] M.J. Esteban: Nonlinear problems in strip-like domains: symmetry of positive vortex rings. Nonlinear Analysis TMA7 (4) (1983) 365–379 · Zbl 0513.35035 · doi:10.1016/0362-546X(83)90090-1
[14] M.K. Kwong: Uniqueness of positive solution of{\(\Delta\)}u +u p=0. Arch. Rat. Mech. Anal.105 (1989) 243–266 · Zbl 0676.35032 · doi:10.1007/BF00251502
[15] P.L. Lions: The concentration-compactness principle in the calculus of variations, the limit case, Part 1,2. Revista Mat. Iberoamericana1 (2, 3) (1985) 145–201, 45–121 · Zbl 0704.49005
[16] P.L. Lions: The concentration-compactness principle in the calculus of variations, locally compact case, Part 1,2. Ann. Inst. H. Poincaré1 (1&4) (1984) 109–145, 223–283 · Zbl 0541.49009
[17] M. Struwe: Variational Methods. Springer, Berlin Heidelberg 1990
[18] C. Stuart: Bifurcation inL p(\(\mathbb{R}\) N ) for a semilinear elliptic equation. Proc. London Math. Soc. (3)57 (1988) 511–541 · Zbl 0673.35005 · doi:10.1112/plms/s3-57.3.511
[19] G. Talenti: Best constant in Sobolev inequality. Ann. Math. Pura Appl.101 (1976) 353–372 · Zbl 0353.46018 · doi:10.1007/BF02418013
[20] Weng-Ching Lien, Shyuh-Yaur Tzeng, Hwai-Chiuan Wang: Existence of solutions of semilinear elliptic problems on unbounded domains. Differ. Int. Equations6 (6) (1993) 128–140 · Zbl 0837.35051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.