×

Definitions of quasiconformality. (English) Zbl 0832.30013

Let \(f : D \to \mathbb{R}^n\), \(D \subset \mathbb{R}^n\) a domain, be a homeomorphism. The mapping \(f\) is quasiconformal iff \((*)\) \(\limsup_{n \to 0} H(x,f,r) \leq C < \infty\) for all \(x \in D\); here \(H(x,f,r) = L(x,f,r)/l(x,f,r)\) and \(L(x,f,r) = \max \{|f(y) - f(x) |: |y - x |= r\}\); for \(l(x,f,r) \max\) is replaced by min. No simple proof for \(\Leftarrow\) is known. The \(H\)-dilatation can be used to study homeomorphisms between arbitrary metric spaces \(X\) and \(Y\). The authors look for global estimates which can be derived from the boundedness of \(H\). Such an estimate is the quasisymmetry condition [P. Tukia J. Väisälä: Ann. Acad. Sci. Fenn., Ser. A I 5, 97-114 (1980; Zbl 0443.54011)], which holds in the case \(X = \mathbb{R}^n = Y\). The authors show that this conclusion remains true if \(X = Y\) is a Garnot group [A. Korányi, H. M. Riemann: Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. Math. (to appear)]. As a byproduct they show that the lim sup in \((*)\) can be replaced by the lim inf. The proofs employ elementary covering arguments instead of the usual capacity estimates.

MSC:

30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations

Citations:

Zbl 0443.54011
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Astala K., Koskela P.: Quasiconformal mappings and global integrability of the derivative. J. Anal. Math.57, 203-220 (1991) · Zbl 0772.30022
[2] Bojarski B.: Remarks on Sobolev imbedding inequalities, In Proc. of the Conference on Complex Analysis, Joensuu 1987. Lecture Notes in Math. 1351, Springer Verlag 1988 · Zbl 0662.46037
[3] Coornaert M.: Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov, Pacific J. Math.159, 241-270 (1993) · Zbl 0797.20029
[4] David G., Semmes S.: Quantitative rectifiability and Lipschitz mappings. Trans. Amer. Math. Soc.337, 855-889 (1993) · Zbl 0792.49029 · doi:10.2307/2154247
[5] Eichmann R.: Variationsprobleme auf der Heisenberggruppe, Lizentiatsarbeit. Universität Bern (1990)
[6] Federer H.: Geometric Measure Theory, Springer, New York, 1969. · Zbl 0176.00801
[7] Folland G.B., Stein E.M.: Hardy spaces on homogeneous groups, Princeton University Press, Princeton, New Jersey, 1982 · Zbl 0508.42025
[8] Gehring F.W.: The definitions and exceptional sets for quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I Math.281, 1-28 (1960) · Zbl 0090.05303
[9] Gehring F.W.: Extremal length definitions for the conformal capacity of rings in space, Michigan Math. J.9, 137-150 (1962) · Zbl 0109.04904 · doi:10.1307/mmj/1028998672
[10] Ghys E., de la Harpe P.: Sur les Groupes Hyperboliques d’après Mikhaer Gromov, Birkhäuser, Progress in Mathematics, Boston-Basel-Berlin, 1990 · Zbl 0731.20025
[11] Gromov M., Pansu P.: Rigidity of Lattices: An Introduction, Geometric Topology: Recent Developments. Lecture Notes in Mathematics 1504, Springer-Verlag. Berlin-New York-Heidelberg, 1991 · Zbl 0786.22015
[12] He Z.-X., Schramm O.: Rigidity of circle domains whose boundary has ?-finite linear measure, Invent. Math.115, 297-310 (1994) · Zbl 0809.30006 · doi:10.1007/BF01231761
[13] Heinonen J.: A capacity estimate on Carnot groups, Bull. Sci. Math. Fr. (to appear) · Zbl 0842.22007
[14] Heintze E.: On homogeneous manifolds of negative curvature, Math. Ann.211, 23-34 (1974) · Zbl 0282.53036 · doi:10.1007/BF01344139
[15] Korányi A., Reimann H.M.: Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. in Math. (to appear) · Zbl 0876.30019
[16] Loewner C.: On the conformal capacity in space. J. Math. Mech.8, 411-414 (1959) · Zbl 0086.28203
[17] Martio O., Näkki R.: Continuation of quasiconformal mappings, (in Russian), Sib. Mat. Zh.28, 162-170 (1987), English translation: Siberian Math. J.28, 645-652 (1988)
[18] Mattila P.: Geometry of sets and measures in Euclidean spaces, to appear in Cambridge Univ. Press
[19] Mitchell J.: On Carnot-Carathéodory metrices, J. Diff. Geom.21, 35-45 (1985) · Zbl 0554.53023
[20] Mostow G.D.: Strong rigidity of locally symmetric spaces, Princeton University Press, Princeton, New Jersey, 1973 · Zbl 0265.53039
[21] Mostow G.D.: A remark on quasiconformal mappings on Carnot groups. Michigan Math. J.41, 31-37 (1994) · Zbl 0898.22006 · doi:10.1307/mmj/1029004912
[22] Pansu P.: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math.129, 1-60 (1989) · Zbl 0678.53042 · doi:10.2307/1971484
[23] Pansu P.: Dimension conforme et sphère à l’infini des veriétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math.,14, 177-212 (1989) · Zbl 0722.53028
[24] Paulin F.: Un groupe hyperbolique est déterminé par son bord, preprint (1993)
[25] Reimann H.M.: An estimate for pseudoconformal capacities on the sphere, Ann. Acad. Sci. Fenn. Ser. A I Math14, 315-324 (1989) · Zbl 0726.31007
[26] Semmes S.: Chord-arc surfaces with small constant. II. Good parameterizations, Adv. in Math.88, 170-199 (1989) · Zbl 0733.42016 · doi:10.1016/0001-8708(91)90007-T
[27] Tukia P., Väisälä J.: Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math.5, 97-114 (1980) · Zbl 0403.54005
[28] Väisälä J. Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math.229, Springer-Verlag, Berlin-Heidelberg-New York, 1971 · Zbl 0221.30031
[29] Väisälä J.: Quasisymmetric embeddings in euclidean spaces, Trans. Amer. Math. Soc.264, 191-204 (1981) · Zbl 0456.30018 · doi:10.1090/S0002-9947-1981-0597876-7
[30] Väisälä J. Quasisymmetric maps of products of curves into the plane, Rev. Roumaine Math. Pures Appl.33, 147-156 (1988) · Zbl 0653.30010
[31] Ziemer W.P.: Extremal length and p-capacity, Michigan Math. J.16, 43-51 (1969) · Zbl 0172.38701 · doi:10.1307/mmj/1029000164
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.