×

Lower bounds for the variance of sums of weakly dependent variables. (English. Russian original) Zbl 0830.60011

Sib. Math. J. 35, No. 1, 192-201 (1994); translation from Sib. Mat. Zh. 35, No. 1, 210-220 (1994).
Let \(H\) be the Hilbert space of random variables defined on a common probability space, with zero mean and finite second moment. Consider a sequence \((\xi_n)_{n \geq 1}\) of elements of \(H\). Denote by \(H(A)\) the subspace of \(H\) spanned by the elements \(\xi_i\), \(i \in A\). Let \((\rho (n))_{n \geq 1}\) be a nonincreasing sequence such that \[ 0 \leq \rho (n) \leq \sup_{k \geq 1} \sup \biggl \{E \xi \eta/(E \xi^2E \eta^2)^{1/2} : \xi \in H \bigl( [1, \ldots, k] \bigr),\;\eta \in H \bigl( [k + n, \ldots] \bigr) \biggr\} \] for all \(n \geq 1\). It is shown that if \(\rho (1) < 1\) and \(\rho (n) \to 0\) as \(n \to \infty\), then there exist a constant \(C_1 = C_1((\rho (n))_{n \geq 1}) > 0\) and an absolute constant \(C_2 > 0\) such that \[ E \left( \sum^n_{k = 1} \xi_k \right)^2 \geq C_1 \exp \left\{ - C_2 \sum^n_{k = 1} k^{-1} \rho (k) \right\} \sum^n_{k = 1} E \xi^2_k. \]

MSC:

60E15 Inequalities; stochastic orderings
60G99 Stochastic processes
60B11 Probability theory on linear topological spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] V. N. Berestovskii, ”Homogeneous manifolds with intrinsic metric. I,” Sibirsk. Mat. Zh.,29, No. 6, 17–29 (1988). · Zbl 0671.53036
[2] V. N. Berestovskii, ”Homogeneous spaces with intrinsic metric,” Dokl. Akad. Nauk SSSR,301, No. 2, 268–271 (1988).
[3] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes [in Russian], Nauka, Moscow (1969).
[4] H. Busemann, The Geometry of Geodesics [Russian translation], Fizmatgiz, Moscow (1962). · Zbl 0112.37202
[5] K. Leichtweiss, Convex Sets [Russian translation], Nauka, Moscow (1985).
[6] V. N. Berestovskii, ”Homogeneous manifolds with intrinsic metric. II,” Sibirsk. Mat. Zh.,30, No. 2, 14–28 (1989).
[7] V. N. Berestovskii, Homogeneous Spaces with Intrinsic Metric [in Russian], Diss. Dokt. Fiz.-Mat. Nauk, Inst. Mat. (Novosibirsk), Novosibirsk (1990).
[8] A. D. Aleksandrov, ”über eine Verallgemeinerung der Riemannschen Geometrie,” Schrift. Inst. Math. der Deutschen Acad. Wiss., No. 1, 33–84 (1957).
[9] A. M. Vershik and V. Ya. Gershkovich, ”Nonholonomic dynamical systems. Geometry of distributions and variational problems,” in: Sovrem. Probl. Mat. Fund. Naprav. (Itogi Nauki i Tekhniki),16 [in Russian], VINITI, Moscow, 1987, pp. 5–85. · Zbl 0797.58007
[10] L. S. Kirillova, ”Non-Riemmannian metrics and the maximum principle,” Dokl. Akad. Nauk UzSSR, No. 7, 9–11 (1986).
[11] A. M. Vershik and O. A. Granichina, ”Reduction of nonholonomic variational problems to isoperimetric problems and connections in principal bundles,” Mat. Zametki,49, No. 5, 37–44 (1991). · Zbl 0734.49023
[12] R. Montgomery, Shortest Loops with a Fixed Holonomy [Preprint], MSRI (1988).
[13] V. N. Berestovskii, ”Submetries of space forms of nonnegative curvature,” Sibirsk. Mat. Zh.,28, No. 4, 44–56 (1987).
[14] Z. Ge, ”On a constrained variational problem and the spaces of horizontal paths,” Pacific J. Math.,149, No. 1, 61–94 (1991). · Zbl 0691.58021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.