×

Stable genus 2 curves and their moduli scheme. (Courbes stables de genre 2 et leur schéma de modules.) (French) Zbl 0819.14010

Let \(R\) be a discrete valuation ring with quotient field \(K\) and residue field \(k\). Given a projective nonsingular curve \(C\) defined over \(K\) of genus at least 1, P. Deligne and D. Mumford proved [Publ. Math., Inst. Hautes Étud. Sci. 36(1969), 75-110 (1970; Zbl 0181.488)] that there exists a finite extension \(K'\) of \(K\) such that \(C \times_ K K'\) is the generic fiber of a stable curve \({\mathcal C}\) defined over \(R_{K'}\), where \(R_{K'}\) denotes the integral closure of \(R\) in \(K'\). Let \(s'\) be the closed point of \(\text{Spec} (R_{K'})\) and \({\mathcal C}_{\tilde s} = {\mathcal C} \times_{R_{K'}} k(s')^{\text{alg}}\). Then \(C_{\tilde s}/k^{\text{alg}}\) is a stable curve and does not depend on the choice of \(s'\) nor of \(K'\).
If \(C\) is an elliptic curve its modular invariant completely determines \(C_{\tilde s}/k^{\text{alg}}\). In this paper the author proves a similar result for a curve \(C\) of genus 2. This problem was first suggested by R. Coleman [in: Théorie des nombres, Sémin. Paris 1985-1986, Prog. Math. 71, 1-18 (1987; Zbl 0633.14018)]. The complete solution is given in theorem 1 and involves the invariants \(J_ 2\), \(J_ 4\), \(J_ 6\), \(J_ 8\), \(J_{10}\) of J. Igusa [cf. Ann. Math., II. Ser. 72, 612-649 (1960; Zbl 0122.390)]. If \(\text{char} (k) \neq 2\) and \(y^ 2 = P(x)\) is an equation for \(C\) then \(J_{2i}\) is a polynomial function in the coefficients of \(P(x)\) of degree \(2i\), for \(i = 1, \dots, 5\). – One consequence of this result is the description of the moduli scheme \(\overline {\mathfrak M}_ 2/ \text{Spec} (\mathbb{Z})\) of stable curves of genus 2. Let \(\mathbb{Z} [{\mathcal I}]\) be the graded \(\mathbb{Z}\)- algebra \(\mathbb{Z} [J_ 2, \dots, J_{10}]/(J^ 2_ 4 - J_ 2 J_ 6 + 4J_ 8)\), \({\mathcal X} = \text{Proj} (\mathbb{Z} [{\mathcal I}])\) and \({\mathcal M}_ 2 : {\mathcal S} ch \to {\mathcal E} ns\) be the functor which associates to each scheme \(S\) the class of isomorphisms of proper curves over \(S\) with connected geometric fibers of genus 2. The author shows that the morphism of functors \(\varphi : {\mathcal M}_ 2 \to {\mathbf h}_{\mathcal X} = \text{Mor} (\cdot, {\mathcal X})\) induces an isomorphism between the coarse moduli scheme \({\mathfrak M}_ 2\) and the principal open subset \(D_ + (J_{10})\) of \({\mathcal X}\) (cf. §8 of the Igusa-paper cited above). He uses theorem 1 and \(\varphi\) to show that \(\overline {\mathfrak M}_ 2\) is the normalisation of a certain blowing-up of \({\mathcal X}\) (theorem 2). The description of this result is simple over \(\mathbb{Z} [1/6]\).

MSC:

14H25 Arithmetic ground fields for curves
14H52 Elliptic curves
14G35 Modular and Shimura varieties
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] [B-L-R] Bosch, S., L?tkebohmert, W., Raynaud, M.: N?ron models. Berlin Heidelberg New York: Springer 1990.
[2] [Bo] Bosch, S.: Formelle standardmodelle hyperelliptischer Kurven. Math. Ann.251, 19-42, (1980) · Zbl 0437.14014 · doi:10.1007/BF01420278
[3] [B-M-MB] Bost, J.-B., Mestre, J.-F., Moret-Bailly, L.: Sur le calcul explicite des ?classes de Chern? des surfaces arithm?tiques de genre 2. In: S?minaire sur les pinceaux de courbes elliptiques. (Ast?rique, vol.183, pp. 69-105) Paris: Soc. Math. Fr. 1990
[4] [C] Coleman, R.: Computing stable reductions. In: Goldstein, C. (ed.) S?minaire de th?orie des nombres de Paris 1985-1986. (Prog. Math., vol.71, pp. 1-18) Boston Basel Stuttgart: Birkh?user 1987
[5] [D] Deschamps, M.: R?duction semi-stable. In: S?minaire sur les pinceaux de courbes de genre au moins deux. (Ast?risque vol.86, 1-34) Paris: Soc. Math. Fr. 1981
[6] [D-M] Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Publ. Math. Inst. Hautes ?tud. Sci.36, 75-110 (1969) · Zbl 0181.48803 · doi:10.1007/BF02684599
[7] [F-vdP] Fresnel, J., van der Put, M.: G?om?trie analytique rigide et applications. (Prog. Math., vol.18), Boston Basel Stuttgart: Birkh?user 1981
[8] [He] Herrlich, F.: Modultheorie hyperelliptischer Mumfordkurven. Math. Ann.274, 283-299, (1986) · Zbl 0571.14016 · doi:10.1007/BF01457075
[9] [Ho] Homma, M.: Automorphisms of prime order of curves. Manuscr. Math.33, 99-109 (1980) · Zbl 0459.14005 · doi:10.1007/BF01298341
[10] [Ig] Igusa, J.I.: Arithmetic variety of moduli for genus two Ann. Math.72, 612-649 (1960) · Zbl 0122.39002 · doi:10.2307/1970233
[11] [Li-1] Liu, Q.: Reduction stable des courbes de genre 2 et le sch?ma de modules \(\overline M _2 \) , C.R. Acad. Sci. Paris S?r. I313, 95-98 (1991) · Zbl 0752.14026
[12] [Li-2] Liu, Q.: Mod?les minimaux des courbes de genre 2. (preprint 1992)
[13] [Lo-1] Lorenzini, D.: Dual graphs of degenerating curves. Math. Ann.287, 135-150 (1990) · Zbl 0668.14019 · doi:10.1007/BF01446881
[14] [Lo-2] Lorenzini, D.: On the group of components of a N?ron model. (preprint 1992)
[15] [L?] L?nsted, K.: The singular points of the moduli spaces for smooth curves. Math. Ann.266, 397-402 (1984) · Zbl 0526.14013 · doi:10.1007/BF01475588
[16] [Me] Mestre, J.-F.: Construction de courbes de genre 2 ? partir de leurs modules. In: Mora, T., Traverso, C. (eds.) Effective methods in algebraic geometry. (Prog. Math., vol.94) Boston Basel Stuttgart: Birkh?user 1990
[17] [Mo] Mostafa, S.: Die Singularit?ten der Modulmannigfaligkeit \(\overline M _g \) (n)der stabilen Kurven vom Geschlechtg?2 mitn-Teilungspunktstruktur. J. Reine Angew. Math.343, 81-98 (1983) · Zbl 0526.14012 · doi:10.1515/crll.1983.343.81
[18] [Mu] Mumford, D.: An enumerative geometry of the moduli space. In: Artin, M., Tate, J. (eds.) Arithmetic and geometry. (Prog. Math., vol.36, 271-328) Boston Basel Stuttgart: Birkh?user 1983 · Zbl 0554.14008
[19] [N] Namikawa, Y.: On the canonical holomorphic map from the moduli space of stabele curves to the Igusa monoidal transform. Nagoya Math. J.52, 197-259 (1973) · Zbl 0271.14014
[20] [N-U] Namikawa, Y., Ueno, K.: The complete classification of fibers in pencils of curves of genus two. Manuscr. Math.9, 143-186 (1973) · Zbl 0263.14007 · doi:10.1007/BF01297652
[21] [Og] Ogg, A.P.: On pencils of curves of genus two. Topology5, 355-362 (1966) · Zbl 0145.17802 · doi:10.1016/0040-9383(66)90027-9
[22] [R] Raynaud, M.: Sp?cialisation du foncteur de Picard. Publ. Math. Inst. Hautes ?tud. Sci.38, 27-76 (1970) · Zbl 0207.51602 · doi:10.1007/BF02684651
[23] [S] Serre, J.-P.: Corps locaux, 2?me ?d. Paris: Hermann 1968
[24] [S-T] Serre, J-P., Tate, J.: Good reduction of abelian varieties. Ann. Math.88, 492-516 (1968) · Zbl 0172.46101 · doi:10.2307/1970722
[25] [T] Tate, J.: Rigid analytic spaces. Invent. Math.12, 257-289 (1971) · Zbl 0212.25601 · doi:10.1007/BF01403307
[26] [V] Viehweg, E.: Invarianten der degenerierten Fasern in lokalen Familien von Kurven. J. Reine Angew. Math.293, 284-308 (1977) · Zbl 0349.14017 · doi:10.1515/crll.1977.293-294.284
[27] [Xi] Xiao, G.: On the stable reduciton of pencils of curves. Math. Z.203, 379-389 (1990) · Zbl 0662.14013 · doi:10.1007/BF02570745
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.