×

Large deviations for Young measures and statistical mechanics of infinite dimensional dynamical systems with conservation law. (English) Zbl 0793.60109

This paper shows that Baldi’s large deviation theorem, in a Young measure framework, provides a useful tool to carry out the statistical mechanics of infinite-dimensional dynamical systems. Besides, the paper completes an estimate of large deviation used in a previous publication.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60F10 Large deviations
82B31 Stochastic methods applied to problems in equilibrium statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arnold, V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier16, 319–361 (1966)
[2] Arsenev, A.: Global existence of a weak solution of Vlasov’s system of equations. U.S.S.R. Comp. Math. and Math. Phys.15, 131–143 (1975) · doi:10.1016/0041-5553(75)90141-X
[3] Baldi, P.: Large deviations and stochastic homogenization. Ann. Mat. Pura Appl.4, 151, 161–177 (1988) · Zbl 0654.60024 · doi:10.1007/BF01762793
[4] Benfatto, G., Pico, P., Pulvirenti, M.: J. Stat. Phys.46, 729 (1987) · Zbl 0682.60106 · doi:10.1007/BF01013382
[5] Berliocchi, H., Lasry, J.M.: Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France101, 129–184 (1973) · Zbl 0282.49041
[6] Boldrighini, C., Frigio, S.: Equilibrium states for a plane incompressible perfect fluid. Commun. Math. Phys.72, 55–76 (1980) · Zbl 0453.76019 · doi:10.1007/BF01200111
[7] Caglioti, E., Lions, P.L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys.143, 501–525 (1992) · Zbl 0745.76001 · doi:10.1007/BF02099262
[8] Campbell, L.J., O’Neil, K.: Statistics of two-dimensional point vortices and high energy vortex states. J. Stat. Phys.65, no 3/4, 495–529 (1991) · Zbl 0935.82568 · doi:10.1007/BF01053742
[9] Chorin, A.J.: Lectures on turbulence theory. Publish or Perish, 1975 · Zbl 0353.76034
[10] Denoix, M.A.: Thesis, Institut de mécanique de Grenoble, 1992
[11] Di Perna, R., Lions, P.L.: Global weak solutions of Vlasov-Maxwell system. Commun. Pure Appl. Math.6, 729–757 (1989) · Zbl 0698.35128
[12] Ellis, R.S.: Entropy, large deviations and statistical mechanics. Berlin, Heidelberg, New York: Springer 1985 · Zbl 0566.60097
[13] Eyink, G.L., Spohn, H.: Negative temperature states and large-scale long-lived vortices in twodimensional turbulence (to appear) · Zbl 0945.82568
[14] Fairlie, D.B., Fletcher, P., Zachos, C.K.: Infinite-dimensional algebras and a trigonometric basis for the classical algebras. J. Math. Phys.31 (5), 1088–1094 (1990) · Zbl 0708.17024 · doi:10.1063/1.528788
[15] Friedlander, L.: An invariant measure for the equationu tt xx +u 3=0. Commun. Math. Phys.98, 1–16 (1985) · Zbl 0576.35082 · doi:10.1007/BF01211041
[16] Fröhlich, J., Ruelle, D.: Statistical mechanics of vortices in an inviscid two-dimensional fluid. Commun. Math. Phys.87, 1–36 (1982) · Zbl 0505.76037 · doi:10.1007/BF01211054
[17] Hopfinger, E.J.: Turbulence and vortices in rotating fluids. Proceedings of the XVIIth International Congress of Theoretical and Applied Mechanics. Amsterdam: North-Holland 1989
[18] Ingersoll, A.P., Cuong, P.G.: J. Atm. Sci.38, 2067–2076 (1981) · doi:10.1175/1520-0469(1981)038<2067:NMOLLJ>2.0.CO;2
[19] Jirina, M.:On regular conditional probabilities. Czech. Math. J.9, no 3, 445 (1959)
[20] Kiessling, M.K.H.: Commun. Pure Appl. Math.46, 27–56 (1993) · Zbl 0811.76002 · doi:10.1002/cpa.3160460103
[21] Kraichnan, R.H., Montgomery, D.: Two-dimensional turbulence. Rep. Prog. Phys.43, 547–617 (1980) · doi:10.1088/0034-4885/43/5/001
[22] Lynden-Bell, D.: Statistical mechanics of violent relaxation in stellar systems. Mon. Not. R. Astr. Soc.136, 101–121 (1967)
[23] Michel, J.: Thesis (to appear)
[24] Michel, J., Robert, R., Sommeria, J.: Statistical mechanical theory of the Great Red Spot of Jupiter (to appear) · Zbl 0843.76091
[25] Miller, J.: Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett.65, 17 2137–2140 (1990) · Zbl 1050.82553 · doi:10.1103/PhysRevLett.65.2137
[26] Miller, J., Weichman, P.B., Cross, M.C.: Statistical mechanics, Euler’s equation, and Jupiter’s Red Spot. Phys. Rev. A45, 2328–2359 (1992) · doi:10.1103/PhysRevA.45.2328
[27] Montgomery, D., Joyce, G.: Statistical mechanics of negative temperature states. Phys. Fluids17, 1139–1145 (1974) · doi:10.1063/1.1694856
[28] Novikov, E.A.: Dynamics and statistics of a system of vortices. Sov. Phys. JETP.41, 937–943 (1976)
[29] Olver, P.J.: Applications of Lie groups to differential equations. Berlin, Heidelberg, New York: Springer 1986 · Zbl 0588.22001
[30] Onsager, L.: Statistical hydrodynamics. Nuovo Cimento suppl.6, 279 (1949)
[31] Pointin, Y.B., Lundgren, T.S.: Statistical mechanics of two dimensional vortices in a bounded container. Phys. Fluids10, 1459–1470 (1976) · Zbl 0339.76013 · doi:10.1063/1.861347
[32] Robert, R.: Concentration et entropie pour les mesures d’Young. C.R. Acad. Sci. Paris. t.309, série I, 757–760 (1989)
[33] Robert, R.: A maximum entropy principle for two-dimensional Euler equations. J. Stat. Phys.65, 3/4, 531–553 (1991) · Zbl 0935.76530 · doi:10.1007/BF01053743
[34] Robert, R.: Concentration and entropy for Young measures. Preprint, Université de Lyon, 1989 · Zbl 0709.94010
[35] Robert, R., Sommeria, J.: Statistical equilibrium states for two-dimensional flows. J. Fluid Mech.229, 291–310 (1991) · Zbl 0850.76025 · doi:10.1017/S0022112091003038
[36] Sanov, I.N.: Mat. Sb.42, 11 (1975)
[37] Sommeria, J., Meyers, S.D., Swinney, H.L.:Laboratory simulation of Jupiter’s Great Red Spot. Nature331, 1 (1988) · doi:10.1038/331689a0
[38] Sommeria, J., Denoix, M.A.: To appear
[39] Sommeria, J., Nore, C., Dumont, T., Robert, R.: Théorie statistique de la tache rouge de Jupiter. C.R. Acad. Sci. Paris, t.312, Série II. 999–1005 (1991)
[40] Sommeria, J., Staquet, C., Robert, R.: Final equilibrium state of a two-dimensional shear layer. J. Fluid Mech.233, 661–689 (1991) · Zbl 0738.76031 · doi:10.1017/S0022112091000642
[41] Tremaine, S., Henon, M., Lynden-Bell, D.:H-functions and mixing in violent relaxation. Mon. Not. R. astr. Soc.219, 285–297 (1986) · Zbl 0615.76086
[42] Varadhan, S.R.S.: Large deviations and applications. Ecole d’été de probabilités de Saint-Flour XV–XVII, 1985–1987
[43] Youdovitch, V.I.: Non-stationary flow of an ideal incompressible liquid. Zh. Vych. Mat.3, 1032–1066 (1963)
[44] Young, L.C.: Generalized surfaces in the calculus of variations. Ann. Math. t.43, 84–103 (1942) · Zbl 0063.09081 · doi:10.2307/1968882
[45] Zachos, C.K.: Hamiltonian flows,SU(,SO(,USp(, and strings. In: Differential geometric methods in theoretical physics. Chau, L.L., Nahm, W. (eds.), New York: Plenum Press 1990 · Zbl 1210.81051
[46] Zeitlin, V.: Finite-mode analogs of 2D ideal hydrodynamics: Coadjoint orbits and local canonical structure. Physica D49, 353–362 (1991) · Zbl 0724.76004 · doi:10.1016/0167-2789(91)90152-Y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.