×

Square tilings with prescribed combinatorics. (English) Zbl 0788.05019

The paper discusses tilings of rectangles by squares with prescribed combinatorics for the intersection pattern of the tiles. Let \(T\) be a triangulation of a quadrilateral \(Q\), and let \(V\) and \(E\) be its sets of vertices and edges, respectively. Then it is proved that there is an essentially unique tiling of a rectangle \(R\) by squares \(Z_ v\), one of each \(v \in V\), such that \(Z_ u \cap Z_ v \neq \varnothing\) if \(\{u,v\} \in E\), and such that the squares at the corners of \(R\) correspond to the corners of \(Q\). The author also describes an algorithm for computing the tiling from \(T\).
Reviewer: E.Schulte (Boston)

MSC:

05B45 Combinatorial aspects of tessellation and tiling problems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Brandt,Ein Abbildungssatz für endlich-vielfach zusammenhägende Gebiete, Bull. de la Soc. des Sci. et des Lettr. de Lódź, Vol. XXX, 3, 1980. · Zbl 0463.30006
[2] Brooks, R. L.; Smith, C. A. B.; Stone, A. H.; Tutte, W. T., The dissection of squares into squares, Duke Math. J., 7, 312-340 (1940) · Zbl 0024.16501 · doi:10.1215/S0012-7094-40-00718-9
[3] J. W. Cannon, Informal seminar, Princeton University.
[4] Duffin, R. J., The extremal length of a network, J. Math. Anal. Appl., 5, 200-215 (1962) · Zbl 0107.43604 · doi:10.1016/S0022-247X(62)80004-3
[5] Harrington, A. N., Conformal Mappings onto domains with arbitrarily specified boundary shapes, J. Analyse Math., 41, 39-53 (1982) · Zbl 0528.30006 · doi:10.1007/BF02803393
[6] Koebe, P., Kontaktprobleme der konformen Abbildung, Berichte Verhande. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Klasse, 88, 141-164 (1936) · Zbl 0017.21701
[7] Lehto, O.; Virtanen, K. I., Quasiconformal Mapping in the Plane (1973), Berlin: Springer, Berlin · Zbl 0267.30016
[8] Shiffman, M., Uniqueness theorems for conformal mappings of multiply connected domains, Proc. Natl. Acad. Sci. U.S.A., 27, 137-139 (1941) · Zbl 0061.15513 · doi:10.1073/pnas.27.2.137
[9] W. Parry,Notes on optimal weight functions, preprint.
[10] Rodin, B.; Sullivan, D., The convergence of circle packings to the Riemann mapping, J. Differ. Geom., 26, 349-360 (1987) · Zbl 0694.30006
[11] O. Schramm,Packing two-dimensional bodies with prescribed combinatorics and applications to the construction of conformal and quasiconformal mappings, Ph.D. thesis, Princeton, 1990.
[12] Schramm, O., Existence and uniqueness of packings with specified combinatorics, Israel J. Math., 73, 321-341 (1991) · Zbl 0756.05039
[13] O. Schramm,Conformal uniformization and packings, preprint. · Zbl 0872.30005
[14] O. Schramm,Transboundary extremal length, preprint. · Zbl 0842.30006
[15] R. Sedgewick,Algorithms, 2nd edition,Addison-Wesley, 1988, 657 pp. · Zbl 0529.68002
[16] W. P. Thurston,The finite Riemann mapping theorem, invited address, International Symposium in Celebration of the Proof of the Bieberbach Conjecture, Purdue University, 1985.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.