×

Persistence in predator-prey systems with ratio-dependent predator influence. (English) Zbl 0771.92017

Summary: Predator-prey models where one or more terms involve ratios of the predator and prey populations may not be valid mathematically unless it can be shown that solutions with positive initial conditions never get arbitrarily close to the axis in question, i.e. that persistence holds. By means of a transformation of variables, criteria for persistence are derived for two classes of such models, thereby leading to their validity. Although local extinction certainly is a common occurrence in nature, it cannot be modeled by systems which are ratio-dependent near the axes.

MSC:

92D40 Ecology
34C99 Qualitative theory for ordinary differential equations
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arditi, R. and L. R. Ginzburg. 1989. Coupling in predator-prey dynamics: ratio dependence.J. theor. Biol. 139, 311–326. · doi:10.1016/S0022-5193(89)80211-5
[2] Butler, G., H. I. Freedman and P. Waltman. 1986. Uniformly persistent systems.Proc. Am. Math. Soc. 96, 425–429. · Zbl 0603.34043 · doi:10.1090/S0002-9939-1986-0822433-4
[3] Butler, G. and P. Waltman. 1986. Persistence in dynamical systems.J. Differential Equations 63, 255–263. · Zbl 0603.58033 · doi:10.1016/0022-0396(86)90049-5
[4] Freedman, H. I. 1980.Deterministic Mathematical Models in Population Ecology. New York: Marcel Dekker. · Zbl 0448.92023
[5] Freedman, H. I. and P. Moson. 1990. Persistence definitions and their connections.Proc. Am. Math. Soc. 109, 1025–1033. · Zbl 0695.34049 · doi:10.1090/S0002-9939-1990-1012928-6
[6] Freedman, H. I. and P. Waltman. 1984. Persistence in models of three interacting predator-prey populations.Math. Biosci. 68, 213–231. · Zbl 0534.92026 · doi:10.1016/0025-5564(84)90032-4
[7] Freedman, H. I. and P. Waltman. 1985. Persistence in a model of three competitive populations.Math. Biosci. 73, 89–101. · Zbl 0584.92018 · doi:10.1016/0025-5564(85)90078-1
[8] Gard, T. C. 1987. Uniform persistence in multispecies population models.Math. Biosci. 85, 93–104. · Zbl 0631.92012 · doi:10.1016/0025-5564(87)90101-5
[9] Gause, G. F., N. P. Smaragdova and A. A. Witt. 1936. Further studies of interaction between predators and prey.J. Anim. Ecol. 5, 1–18. · doi:10.2307/1087
[10] Lindstrom, T. Preprint. Qualitative analysis of a predator-prey system with limit cycles.
[11] Karkar, A. K., D. Mitra, S. Ray and A. B. Roy. 1991. Permanence and oscillatory coexistence of a detrius-based prey-predator model.Ecol. Model 53, 147–156. · doi:10.1016/0304-3800(91)90146-R
[12] Veilleux, B. G. 1979. An analysis between the predatory interaction between paramecium and didinium.J. Anim. Ecol. 48, 787–803. · doi:10.2307/4195
[13] Wiens, J. A., J. F. Addicott, T. J. Case and J. Diamond. 1986. Overview: the importance of spatial and temporal scale in ecological investigations. In:Community Ecology. J. Diamond and T. J. Case (Eds), pp. 145–153. New York: Harper and Row.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.