×

Theory of the Bernstein-Sato polynomial for Tate and Dwork-Monsky-Washnitzer algebras. (La théorie du polynôme de Bernstein-Sato pour les algèbres de Tate et de Dwork-Monsky-Washnitzer.) (French) Zbl 0765.14009

Let \(k\) be a field of characteristic zero, \(A=k[x_ 1,\dots,x_ n]\) the \(k\)-algebra of polynomials in \(n\) indeterminates and \(D=D_{A/k}=A[\partial_ 1,\dots,\partial_ n]\). Let \(s\) be an indeterminate over \(k\); for every non-zero \(f\in A\) denote by \({\mathbf F}[s]\) the free \(A_ f[s]\)-module generated by a symbol \({\mathbf f}^ s\); \({\mathbf F}[s]\) carries a canonical structure as \(D_ f[s]\)-module defined by \(\partial g{\mathbf f}^ s=(\partial g+sgf^{-1}){\mathbf f}^ s\) for every \(\partial\in\text{Der}_ k(A)\) and every \(g\in A_ f[s]\). I. N. Bernstein has shown [cf. Funct. Anal. Appl. 6(1972), 273-285 (1973); translation from Funkts. Anal. Prilozh. 6, No. 4, 26-40 (1972; Zbl 0282.46038)] that there exists a polynomial \(b(s)\in k[s]\backslash\{0\}\) and a differential operator \(P(s)\in D(s)\) such that \(b(s){\mathbf f}^ s=P(s)f{\mathbf f}^ s\). This result plays an important role in the theory of \({\mathcal D}_ X\)-modules, \(X\) a variety over \(k\) or \(k=\mathbb{C}\) and \(X\) an analytic variety. In particular, it can be used to prove the finiteness of De Rham cohomology for non-singular varieties. The authors of the present paper generalize the functional equation given above for the case of Tate algebras and Dwork-Monsky-Washnitzer algebras. They consider commutative \(k\)-algebras \(A\) which are noetherian and regular, equicodimensional of dimension \(n\), such that \(A/{\mathfrak m}\) is algebraic over \(k\) for every maximal ideal \({\mathfrak m}\) of \(A\) and such that there exist \(x_ 1,\dots,x_ n\in A\) and \(\partial_ 1,\dots,\partial_ n\in\text{Der}_ k(A)\) satisfying \(\partial_ i(x_ j)=\delta_{ij}\). They prove a functional equation as above [theorem 3.1.1]; in particular, for every \(D\)-module of minimal dimension, \(M_ f\) is a \(D\)-module of finite type. In section 4 the authors apply this result to the algebraic and formal case, and to the case of Tate-algebras and algebras of Dwork-Monsky-Washnitzer.

MSC:

14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
14F40 de Rham cohomology and algebraic geometry
32C38 Sheaves of differential operators and their modules, \(D\)-modules
14G20 Local ground fields in algebraic geometry

Citations:

Zbl 0282.46038
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] M. ARTIN , Grothendieck Topologies , preprint, Harvard Univ., 1962 . Zbl 0208.48701 · Zbl 0208.48701
[2] J. BERNSTEIN , The Analytic Continuation of Generalized Functions with Respect to a Parameter (Funz. Anal. Appl., vol. 6, 1972 , p. 26-40). MR 47 #9269 | Zbl 0282.46038 · Zbl 0282.46038 · doi:10.1007/BF01077645
[3] P. BERTHELOT , Géométrie Rigide et cohomologie des variétés algébriques de caractéristique p (Mémoire S.M.F., n^\circ 23, 1986 , p. 7-32). Numdam | MR 88a:14020 | Zbl 0606.14017 · Zbl 0606.14017
[4] P. BERTHELOT , Cohomologie rigide et théorie des D-modules (Conference on p-adic analysis, Trento, juin 1989 ), Lect. Notes Math. (à paraître). Zbl 0722.14008 · Zbl 0722.14008
[5] J. E. BJÖRK , The Global Homological Dimension of Some Algebras of Differential Operators (Invent. Math., vol. 17, 1972 , p. 67-68). MR 47 #8619 | Zbl 0241.12107 · Zbl 0241.12107 · doi:10.1007/BF01390024
[6] J. E. BJÖRK , Dimensions over Algebras of Differential Operators , preprint, 1974 , non publié. · Zbl 0313.16027
[7] J. E. BJÖRK , Rings of Differential Operators , North-Holland, Amsterdam, 1979 . Zbl 0499.13009 · Zbl 0499.13009
[8] S. BOSCH , U. GÜNTZER R. REMMERT , Non-Archimedean Analysis (Grund der math. Wisen., vol. 261, Springer Verlag, Berlin, Heidelberg, 1984 ). MR 86b:32031 | Zbl 0539.14017 · Zbl 0539.14017
[9] N. BOURBAKI , Algèbre commutative , chap. 8 et 9, Masson, Paris, 1983 . MR 86j:13001 | Zbl 0579.13001 · Zbl 0579.13001
[10] J. DIXMIER , Algèbres enveloppantes , Gauthier-Villars, Paris, 1974 . MR 58 #16803a | Zbl 0308.17007 · Zbl 0308.17007
[11] A. GROTHENDIECK et J. DIEUDONNÉ , Éléments de Géométrie Algébrique, IV : Étude locale des schémas et des morphismes des schémas (Publ. I.H.E.S., vol. 20, 24, 28 et 32, Presses Univ. de France, Paris, 1967 ). Numdam | Zbl 0153.22301 · Zbl 0153.22301
[12] J. FRESNEL et M. VAN DER PUT , Géométrie analytique rigide et applications , Birkhäuser, Boston-Basel-Stuttgart, 1981 . MR 83g:32001 | Zbl 0479.14015 · Zbl 0479.14015
[13] J. FRISCH , Points de platitude d’un morphisme d’espaces analytiques complexes (Invent. Math., vol. 4, 1968 , p. 118-138). MR 36 #5388 | Zbl 0167.06803 · Zbl 0167.06803 · doi:10.1007/BF01425245
[14] J. FULTON , A Note on Weakly Complete Algebras (Bull. Amer. Math. Soc., vol. 75, 1969 , p. 591-593). Article | MR 39 #193 | Zbl 0205.34303 · Zbl 0205.34303 · doi:10.1090/S0002-9904-1969-12250-0
[15] O. GABBER , The Integrability of the Characteristic Variety (Amer. J. Math., vol. 103, 1981 , p. 445-468). MR 82j:58104 | Zbl 0492.16002 · Zbl 0492.16002 · doi:10.2307/2374101
[16] F. GEANDIER , Polynômes de Bernstein et déformations à nombre de Milnor constant (Thèse, Univ. de Nice, juin 1989 ). MR 91f:32045 · Zbl 0696.32010
[17] H. HIRONAKA , Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero I, II (Ann. of Math., vol. 79, 1964 , p. 109-203 et 205-326). MR 33 #7333 | Zbl 0122.38603 · Zbl 0122.38603 · doi:10.2307/1970486
[18] M. KASHIWARA , b-Functions and Holonomic Systems (Invent. Math., vol. 38, 1976 , p. 33-53). MR 55 #3309 | Zbl 0354.35082 · Zbl 0354.35082 · doi:10.1007/BF01390168
[19] M. KASHIWARA , On the Holonomic Systems of Linear Differential Equations II (Invent. Math., vol. 49, 1978 , p. 121-135). MR 80a:58035 | Zbl 0401.32005 · Zbl 0401.32005 · doi:10.1007/BF01403082
[20] M. KASHIWARA , Vanishing Cycle Sheaves and Holonomic Systems of Differential Equations (Lect. Notes in Math., n^\circ 1012, 1983 , p. 134-142). MR 85e:58137 | Zbl 0566.32022 · Zbl 0566.32022
[21] S. LUBKIN , A p-adic Proof of Weil’s Conjectures (Ann. of Math., vol. 87, 1968 , p. 105-194 et 195-225). MR 37 #215 | Zbl 0188.53004 · Zbl 0188.53004 · doi:10.2307/1970596
[22] B. MALGRANGE et coll., Séminaire sur les opérateurs différentiels , Grenoble, 1976 .
[23] B. MALGRANGE , Le polynôme de Bernstein-Sato et cohomologie évanescente (Astérisque, n^\circ 101-102, 1983 , p. 233-267). MR 86f:58148 | Zbl 0528.32007 · Zbl 0528.32007
[24] H. MATSUMURA , Commutative Algebra , second edition, Benjamin/Cummings Publ. Co., Massachusetts, 1980 . MR 82i:13003 | Zbl 0441.13001 · Zbl 0441.13001
[25] H. MATSUMURA , Commutative Ring Theory (Cambridge Studies in Advan. Math., vol. 8, 1986 ). MR 88h:13001 | Zbl 0603.13001 · Zbl 0603.13001
[26] Z. MEBKHOUT , Cohomologie locale d’une hypersurface (Lect. Notes in Math., n^\circ 670, 1977 , p. 89-119). MR 80h:32023 | Zbl 0391.32006 · Zbl 0391.32006
[27] Z. MEBKHOUT , Local Cohomology of Analytic Spaces (Publ. R.I.M.S. Kyoto Univ., vol. 12, 1977 , p. 247-256). Article | MR 56 #12307 | Zbl 0372.32007 · Zbl 0372.32007 · doi:10.2977/prims/1195196607
[28] Z. MEBKHOUT , Une équivalence de catégories (Comp. Math., vol. 51, 1984 , p. 51-62). Numdam | MR 85k:58072 | Zbl 0566.32021 · Zbl 0566.32021
[29] Z. MEBKHOUT et L. NARVÁEZ-MACARRO , Sur les coefficients de De Rham-Grothendieck d’une variété algébrique (Conférence on p-adic analysis, Trento, juin 1989 ), Lect. Notes Math. (à paraître). Zbl 0727.14011 · Zbl 0727.14011
[30] D. MEREDITH , Weak Formal Schemes (Nagoya Math. J., vol. 45, 1971 , p. 1-38). Article | MR 48 #8505 | Zbl 0207.51502 · Zbl 0207.51502
[31] P. MONSKY et G. WASHNITZER , Formal Cohomology I (Ann. of Math., vol. 88, 1968 , p. 181-217). MR 40 #1395 | Zbl 0162.52504 · Zbl 0162.52504 · doi:10.2307/1970571
[32] L. NARVÁEZ-MACARRO , A Note of the Behavior Under Ground Field Extension of Quasi-Coefficient Fields [J. London Math. Soc. (à paraître)]. Zbl 0687.14015 · Zbl 0687.14015 · doi:10.1112/jlms/s2-43.1.12
[33] M. VAN DER PUT , The Cohomology of Monsky and Washnitzer (Bull. Soc. Math. France, Mémoire n^\circ 23, 1986 , p. 33-60). Numdam | MR 88a:14022 | Zbl 0606.14018 · Zbl 0606.14018
[34] P. ROBBA , Indice d’un opérateur différentiel p-adique IV (Ann. Inst. Fourier, vol. 35, n^\circ 2, 1985 , p. 13-55). Numdam | MR 86j:12012 | Zbl 0548.12016 · Zbl 0548.12016 · doi:10.5802/aif.1008
[35] P. ROBBA , Livre (à paraître).
[36] J. E. ROOS , Détermination de la dimension homologique globale des algèbres de Weyl , (C. R. Acad. Sci. Paris, t. 274, série A, 1972 , p. 1556-1558). MR 45 #1995 | Zbl 0227.16021 · Zbl 0227.16021
[37] J. J. ROTMAN , An introduction to Homological Algebra , Academic Press, New York, 1979 . MR 80k:18001 | Zbl 0441.18018 · Zbl 0441.18018
[38] C. SABBAH , Dx-modules et cycles évanescents (Travaux en cours, n^\circ 24, p. 53-98, Hermann, Paris, 1987 ). MR 89b:32020 | Zbl 0623.32013 · Zbl 0623.32013
[39] J. P. SERRE , Algèbre locale et multiplicités (Lect. Notes in Math., n^\circ 11, Springer Verlag, Berlin-Heidelberg, 1965 ). MR 34 #1352 | Zbl 0142.28603 · Zbl 0142.28603
[40] B. STENSTRÖM , Rings of quotients , Springer-Verlag, Berlin-Heidelberg, 1975 . Zbl 0296.16001 · Zbl 0296.16001
[41] J. TATE , Rigid Analytic Spaces (Invent. Math., vol. 12, 1971 , p. 257-289). MR 46 #5323 | Zbl 0212.25601 · Zbl 0212.25601 · doi:10.1007/BF01403307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.