Language:   Search:   Contact
Zentralblatt MATH has released its new interface!
For an improved author identification, see the new author database of ZBMATH.

Simple Search

Query:
Enter a query and click »Search«...
Format:
Display: entries per page entries
Zbl 0758.60073
Bertoin, Jean
Sur la décomposition de la trajectoire d'un processus de Lévy spectralement positif en son infimum. (On the path decomposition at the infimum for a spectrally positive Lévy process).
(French)
[J] Ann. Inst. Henri Poincaré, Probab. Stat. 27, No.4, 537-547 (1991). ISSN 0246-0203

Let $X$ be the coordinate process on the space $\Omega$ of càdlàg functions with a life time $\zeta$ and the natural filtration $({\cal F}\sb t$, $t\geq 0)$, $\overline {X}\sb t=\sup\{X\sb s$, $0\leq s\leq t\}$, $\underline {X}\sb t=\inf\{X\sb s$, $0\leq s\leq t\}$, $\underline{\underline {X}}\sb t=\inf\{X\sb s$, $t\leq s<\zeta\}$, $\rho=\sup\{t\geq 0$: $\underline{\underline {X}}\sb t=\underline {X}\sb \infty\}$, $\tau(-x)=\inf\{t\geq 0$: $X\sb t<-x\}$. It is considered a probability measure $P$ on ${\cal F}\sb \infty$ such that $X$ is a spectrally positive Lévy process starting from 0 and drifting to $+\infty$. Denoting $\alpha$ the unique positive solution of $\psi(\alpha)=0$, where $\psi$ is the cumulant function of $X$, define the probability measure $P\sp*$ by means of the equality $$dP\sp*\mid\sb{{\cal F}\sb t}=\exp\{-\alpha X\sb t\}dP\mid\sb{{\cal F}\sb t}, \qquad t\geq 0.$$ It is proved that the probability distribution of the preinfimum process $(X\sb t$, $0\leq t<\rho)$ with respect to $P$ coincides with the probability distribution of the process $(X\sb t$, $0\leq t<\tau(-\gamma))$ with respect to $P\sp*$, where $\gamma$ is independent of $X$ and exponentially distributed with the parameter $\alpha$ and the probability distribution of $X- 2\underline{\underline {X}}\sp c-{\cal J}$ with respect to $P$ equals to $P\sp*$, where $\underline{\underline {X}}\sp c$ denotes the continuous part of $\underline{\underline {X}}$ and $${\cal J}\sb t=\sum\sb{0<s\leq t}(X\sb s-X\sb{s-})\text{{\bf 1}}\sb{\{\underline{\underline {X}}\sb s>X\sb{s-}\}}.$$ The known inverse Pitman's theorem is extended.
[B.Grigelionis (Vilnius)]
MSC 2000:
*60J99 Markov processes
60G30 Induced measures of stochastic processes

Keywords: path decomposition; spectrally positive Lévy process; cumulant function; inverse Pitman's theorem

Highlights
Master Server