Language:   Search:   Contact
Zentralblatt MATH has released its new interface!
For an improved author identification, see the new author database of ZBMATH.

# Simple Search

Query:
Enter a query and click »Search«...
Format:
Display: entries per page entries
Zbl 0748.11016
Todorov, P.G.
Explicit formulas for the Bernoulli and Euler polynomials and numbers.
(English)
[J] Abh. Math. Semin. Univ. Hamb. 61, 175-180 (1991). ISSN 0025-5858; ISSN 1865-8784/e

In this paper the main result (Theorem 2) gives the following formula for the Bernoulli polynomials $B\sb n(x)$ $$(te\sp{tx}/(e\sp t-1)=\sum\sp \infty\sb{n=0}B\sb n(x)t\sp n/n!,\quad \vert t\vert<2\pi):$$ $$B\sb n(\lambda z)=\lambda\sp nB\sb n(z)+n\sum\sp n\sb{n=1}\sum\sp{\nu- 1}\sb{k=0}(-1)\sp \nu{n\choose\nu}E\sb \lambda(n,\nu,k)(k+\lambda z)\sp{n-1},$$ where $z$ is a complex number, $n\ge 1$ and $\lambda\ge 2$ are integers, and $$E\sb \lambda(n,\nu,k)=\sum\sp{\lambda- 1}\sb{j=1}\varepsilon\sb \lambda\sp{(\nu-k)j}/(1-\varepsilon\sp j\sb \lambda)\sp n,\quad\varepsilon\sb \lambda=\exp i2\pi/\lambda.$$ Furthermore the author derives (Theorem 1) twelve formulas for the Bernoulli and Euler numbers and the Bernoulli and Euler polynomials, e.g. $$B\sb n=(n/2\sp n(2\sp n-1))\sum\sp n\sb{\nu=1}\sum\sp{\nu-1}\sb{k=0}(- 1)\sp{k+1}{n\choose\nu}k\sp{n -1},\quad n\ge 1.$$ The proofs make use of the combinatorial identity of {\it H. W. Gould} [Combinatorial identities (1972; Zbl 0241.05011)] $$\sum\sp n\sb{m=k}{m-a\choose k-a}x\sp m=x\sp n\sum\sp n\sb{\nu=k}{n-a+1\choose \nu-a+1}((1-x)/x)\sp{\nu-k}$$ and the formulas of {\it H. Alzer} [Mitt. Math. Ges. Hamb. 11, 469-471 (1987; Zbl 0632.10008)] and {\it K. Dilcher} [Abh. Semin. Univ. Hamb. 59, 143- 156 (1989; Zbl 0712.11015)] for the Bernoulli and Euler polynomials.
[L.Skula (Brno)]
MSC 2000:
*11B68 Bernoulli numbers, etc.
05A19 Combinatorial identities

Keywords: Bernoulli numbers; Gould's identity; Bernoulli polynomials; Euler numbers; Euler polynomials

Citations: Zbl 0241.05011; Zbl 0632.10008; Zbl 0712.11015

Highlights
Master Server

### Zentralblatt MATH Berlin [Germany]

© FIZ Karlsruhe GmbH

Zentralblatt MATH master server is maintained by the Editorial Office in Berlin, Section Mathematics and Computer Science of FIZ Karlsruhe and is updated daily.

Other Mirror Sites

Copyright © 2013 Zentralblatt MATH | European Mathematical Society | FIZ Karlsruhe | Heidelberg Academy of Sciences