×

Ordinary differential equations on closed subsets of locally convex spaces with applications to fixed point theorems. (English) Zbl 0721.34074

The author constructs an approximate solution of the Cauchy problem \(x'=f(t,x)\), \(x(0)=x_ 0\) defined on closed subsets of locally convex topological spaces (real or complex) and shows that under some assumptions (e.g. dissipativity condition or compactness-type condition) the approximate solution converges to a solution. New fixed point theorems for dissipative and \(\alpha\)-condensing maps defined on closed subsets of locally convex topological spaces are given.

MSC:

34G20 Nonlinear differential equations in abstract spaces
47H10 Fixed-point theorems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Phillips, R. S., Integration in convex linear topological spaces, Trans. Amer. Math. Soc., 47, 114 (1940) · Zbl 0022.31902
[2] Dubinsky, E., Differential equations and differential calculus in Montel spaces, Trans. Amer. Math. Soc., 110, 1 (1964) · Zbl 0119.11802
[3] Millionscikov, V. M., A contribution to the theory of differential equations \(dxdt = f(x, t)\) in locally convex spaces, Soviet Math. Dokl., 1, 288 (1960)
[4] Yuasa, T., Differential equations in a locally convex space via the measure of nonprecompactness, J. Math. Anal. Appl., 84, 534 (1981)
[5] Agase, S. B., Existence and stability of ordinary differential equations in locally convex spaces, Nonlinear Anal. Theory Meth. Appl., 5, 713 (1981) · Zbl 0471.34004
[6] Hamilton, R. S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc., 7, 65 (1982) · Zbl 0499.58003
[7] Rolewicz, S., Metric Linear Spaces (1985), Reidel: Reidel Dordrecht
[8] De Wilde, M., Closed Graph Theorems and Webbed Spaces (1978), Pitman: Pitman London · Zbl 0373.46007
[9] Lakshmikantham, V.; Leela, S., Nonlinear Differential Equations in Abstract Spaces (1981), Pergamon: Pergamon Oxford · Zbl 0456.34002
[10] Martin, R. H., Nonlinear Operators and Differential Equations in Banach Spaces (1976), Wiley: Wiley New York
[11] Sadovskii, B. N., Limit-compact and condensing operators, Russian Math. Surveys, 27, 85 (1982) · Zbl 0243.47033
[12] Colombeau, J. F., Differential Calculus and Holomorphy (1982), North-Holland: North-Holland Amsterdam · Zbl 0533.46027
[13] Deimling, K., Differential equations in Banach spaces, (Lecture Notes in Mathematics, Vol. 596 (1977), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0418.34062
[14] Grothendieck, A., Topological Vector Spaces (1973), Gordon & Breach: Gordon & Breach New York · Zbl 0275.46001
[15] Aubin, J. P.; Ekeland, I., Applied Nonlinear Analysis (1984), Wiley: Wiley New York
[16] Aubin, J. P.; Cellina, A., Differential Inclusions (1984), Springer-Verlag: Springer-Verlag Berlin
[17] Halpern, B. R.; Bergman, G. M., A fixed-point theorem for inward and outward maps, Trans. Amer. Math. Soc., 130, 353 (1968) · Zbl 0153.45602
[18] Floret, K., Folgenretraktive Sequenzen Lokalkonvexer Räume, J. Reine Angew. Math., 259, 65 (1973) · Zbl 0251.46003
[19] Kucera, J.; McKennon, K., Köthe’s example of an incomplete LB-space, (Proc. Amer. Math. Soc., 93 (1985)), 79 · Zbl 0526.46005
[20] Deimling, K., Fixed points of condensing maps, in Volterra equations, (Lecture Notes in Mathematics, Vol. 737 (1979), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0186.20402
[21] Reich, S., Fixed points in locally convex spaces, Math. Z., 125, 17 (1972) · Zbl 0216.17302
[22] Reich, S., A fixed point theorem for Frechet spaces, J. Math. Anal. Appl., 78, 33 (1980) · Zbl 0448.47036
[23] Peck, N. T., Support points in locally convex spaces, Duke Math. J., 38, 271 (1971) · Zbl 0213.39103
[24] Reich, S., On fixed point theorems obtained from existence theorems for differential equations, J. Math. Anal. Appl., 54, 26 (1976) · Zbl 0328.47034
[25] Reich, S., Approximate selections, best approximations, fixed points and invariant sets, J. Math. Anal. Appl., 62, 104 (1978) · Zbl 0375.47031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.