×

A convexity theorem for isospectral manifolds of Jacobi matrices in a compact Lie algebra. (English) Zbl 0715.58004

Some subsets of an isospectral manifold of Jacobi matrices are shown to be diffeomorphic to the interior of a polytope associated with the image of a certain momentum map.
Reviewer: A.Dimca

MSC:

37J06 General theory of finite-dimensional Hamiltonian and Lagrangian systems, Hamiltonian and Lagrangian structures, symmetries, invariants
37J37 Relations of finite-dimensional Hamiltonian and Lagrangian systems with Lie algebras and other algebraic structures
17B99 Lie algebras and Lie superalgebras
53D20 Momentum maps; symplectic reduction
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. F. Atiyah, Convexity and commuting Hamiltonians , Bull. London Math. Soc. 14 (1982), no. 1, 1-15. · Zbl 0482.58013 · doi:10.1112/blms/14.1.1
[2] A. L. Besse, Einstein manifolds , Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. · Zbl 0613.53001
[3] A. M. Bloch, R. Brockett, and T. Ratiu, A new formulation of the generalized Toda lattice equations and their fixed point analysis via the moment map , to appear in Bull. Amer. Math. Soc. · Zbl 0715.58033 · doi:10.1090/S0273-0979-1990-15960-9
[4] R. W. Brockett, Dynamical systems that sort lists, diagonalize matrices and solve linear programming problems , Proc. 27th IEEE Conference on Decision and Control, 1988, pp. 799-803.
[5] M. W. Davis, Some aspherical manifolds , Duke Math. J. 55 (1987), no. 1, 105-139. · Zbl 0631.57019 · doi:10.1215/S0012-7094-87-05507-4
[6] P. Deift, T. Nanda, and C. Tomei, Ordinary differential equations and the symmetric eigenvalue problem , SIAM J. Numer. Anal. 20 (1983), no. 1, 1-22. JSTOR: · Zbl 0526.65032 · doi:10.1137/0720001
[7] J. J. Duistermaat, J. A. C. Kolk, and V. S. Varadarajan, Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups , Compositio Math. 49 (1983), no. 3, 309-398. · Zbl 0524.43008
[8] N. Ercolani, H. Flaschka, and L. Haine, The level varieties of the complex Toda equations , in preparation.
[9] H. Flaschka and L. Haine, Torus orbits in \(G/P\) , to appear in Pac. J. Math. · Zbl 0788.22017 · doi:10.2140/pjm.1991.149.251
[10] D. Fried, The cohomology of an isospectral flow , Proc. Amer. Math. Soc. 98 (1986), no. 2, 363-368. JSTOR: · Zbl 0618.58030 · doi:10.2307/2045713
[11] R. Goodman and N. R. Wallach, Classical and quantum mechanical systems of Toda-lattice type. II. Solutions of the classical flows , Comm. Math. Phys. 94 (1984), no. 2, 177-217. · Zbl 0592.58028 · doi:10.1007/BF01209301
[12] 1 V. Guillemin and S. Sternberg, Convexity properties of the moment mapping , Invent. Math. 67 (1982), no. 3, 491-513. · Zbl 0503.58017 · doi:10.1007/BF01398933
[13] 2 V. Guillemin and S. Sternberg, Convexity properties of the moment mapping. II , Invent. Math. 77 (1984), no. 3, 533-546. · Zbl 0561.58015 · doi:10.1007/BF01388837
[14] G. J. Heckman, Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups , Invent. Math. 67 (1982), no. 2, 333-356. · Zbl 0497.22006 · doi:10.1007/BF01393821
[15] J. E. Humphreys, Introduction to Lie algebras and representation theory , Springer-Verlag, New York, 1972. · Zbl 0254.17004
[16] B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition , Ann. Sci. École Norm. Sup. (4) 6 (1973), 413-455 (1974). · Zbl 0293.22019
[17] B. Kostant, The solution to a generalized Toda lattice and representation theory , Adv. in Math. 34 (1979), no. 3, 195-338. · Zbl 0433.22008 · doi:10.1016/0001-8708(79)90057-4
[18] J.-H. Lu, Poisson and symplectic structure on Lie groups , preprint, 1988.
[19] J.-H. Lu and A. Weinstein, Poisson Lie groups, dressing transformations and Bruhat decompositions , to appear in J. Diff. Geom. · Zbl 0673.58018
[20] J. Moser, Finitely many mass points on the line under the influence of an exponential potential-an integrable system , Dynamical systems, theory and applications (Rencontres, BattelleRes. Inst., Seattle, Wash., 1974), Springer, Berlin, 1975, 467-497. Lecture Notes in Phys., Vol. 38. · Zbl 0323.70012 · doi:10.1007/3-540-07171-7_12
[21] P. van Moerbeke, The spectrum of Jacobi matrices , Invent. Math. 37 (1976), no. 1, 45-81. · Zbl 0361.15010 · doi:10.1007/BF01418827
[22] T. Ratiu, Involution theorems , Geometric methods in mathematical physics (Proc. NSF-CBMS Conf., Univ. Lowell, Lowell, Mass., 1979), Lecture Notes in Math., vol. 775, Springer, Berlin, 1980, pp. 219-257. · Zbl 0435.58014
[23] 1 A. G. Reyman and M.A. Semenov-Tian-Shansky, Reduction of Hamiltonian systems, affine Lie algebras and Lax equations , Invent. Math. 54 (1979), no. 1, 81-100. · Zbl 0403.58004 · doi:10.1007/BF01391179
[24] 2 A. G. Reyman and M.A. Semenov-Tian-Shansky, Reduction of Hamiltonian systems, affine Lie algebras and Lax equations. II , Invent. Math. 63 (1981), no. 3, 423-432. · Zbl 0442.58016 · doi:10.1007/BF01389063
[25] W. W. Symes, Systems of Toda type, inverse spectral problems, and representation theory , Invent. Math. 59 (1980), no. 1, 13-51. · Zbl 0474.58009 · doi:10.1007/BF01390312
[26] M. Toda, Theory of nonlinear lattices , Springer Series in Solid-State Sciences, vol. 20, Springer-Verlag, Berlin, 1981. · Zbl 0465.70014
[27] C. Tomei, The topology of isospectral manifolds of tridiagonal matrices , Duke Math. J. 51 (1984), no. 4, 981-996. · Zbl 0558.57006 · doi:10.1215/S0012-7094-84-05144-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.