×

On the \(K\)-theory of pullbacks. (English) Zbl 1427.19002

The Milnor-Bass-Murty (MBM) theorem associates a long exact sequence of \(K\)-groups to a Milnor square of rings. This long exact sequence starts at \(K_1\) and goes into negative \(K\)-theory. The natural idea is to extend this sequence to all Quillen \(K\)-groups. In the most straightforward sense, this is not actually possible as shown by R. G. Swan [J. Pure Appl. Algebra 1, 221–252 (1971; Zbl 0262.16025)].
Land and Tamme, in the title under review, have discovered how to extend this sequence in a less obvious fashion using spectra (in the sense of a sequence of topological spaces). To a Milnor square of rings \[ \begin{matrix} A & \rightarrow & B\\ \downarrow & & \downarrow \\ A' & \rightarrow & B' \end{matrix} \] they associate a spectra \(X = A'\odot_A^{B'} B\) such that the classic MBM sequence extends as \[\cdots\to K_i(A)\to K_i(A')\oplus K_i(B)\to K_i(X)\to K_{i-1}(A)\to\cdots\] valid in all degrees.
The authors actually formulate the result more generally. A Milnor square is a special case of a pullback of \(\mathbb{E}_1\)-spectra and \(K\)-theory is a localizing invariant, so we can formulate the result with these more general objects. This comes in useful as there are many localizing invariants that are also important in the realm of \(K\)-theory (some of which can be used to compute \(K\)-theory itself). Therefore, the context of the result is appropriate.
Their theorem of course puts many classic theorems such as Suslin’s excision theorem, in a more general context. One particular I found rather interesting: if \(A\) is an associative ring and \(I\) a two-sided nilpotent ideal of \(A\) such that \(NI = 0\) for some \(N > 0\), then all the relative \(K\)-groups \(K_i(A,A/I)\) are annihilated by some power of \(N\). This result was previously only available in the case where \(A\) is a \(\mathbb{Z}/N\) algebra, which is due to Geisser and Hesselholt. The authors also give a general cdh-descent type theorem: that any truncating invariant satisfies cdh-descent on quasicompact, quasiseparated schemes.
The paper itself is a tour de force of modern derived algebra and infinity category theory, and is an outstanding example of how some of the ideas of higher category theory have come to clarify the scene of algebraic \(K\)-theory.

MSC:

19D55 \(K\)-theory and homology; cyclic homology and cohomology
19D50 Computations of higher \(K\)-theory of rings
19E08 \(K\)-theory of schemes

Citations:

Zbl 0262.16025
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Asok, Aravind; Hoyois, Marc; Wendt, Matthias, Affine representability results in {\( \Bbb A^1\)}-homotopy theory, {I}: {V}ector bundles, Duke Math. J.. Duke Mathematical Journal, 166, 1923-1953 (2017) · Zbl 1401.14118 · doi:10.1215/00127094-0000014X
[2] Andr\'{e}, Michel, Homologie des Alg\`ebres Commutatives, Grundlehren Math. Wiss., 206, xv+341 pp. (1974) · Zbl 0284.18009 · doi:10.1007/978-3-642-51449-4
[3] Ausoni, Christian; Rognes, John, Rational algebraic {\(K\)}-theory of topological {\(K\)}-theory, Geom. Topol.. Geometry & Topology, 16, 2037-2065 (2012) · Zbl 1260.19004 · doi:10.2140/gt.2012.16.2037
[4] Bass, Hyman, Algebraic {\(K\)}-Theory, xx+762 pp. (1968) · Zbl 0174.30302
[5] Bousfield, A. K.; Friedlander, E. M., Homotopy theory of {\( \Gamma \)}-spaces, spectra, and bisimplicial sets. Geometric Applications of Homotopy Theory, {II}, Lecture Notes in Math., 658, 80-130 (1978) · Zbl 0405.55021 · doi:10.1007/BFb0068711
[6] Blumberg, Andrew J.; Gepner, David; Tabuada, Gon\c{c}alo, A universal characterization of higher algebraic {\(K\)}-theory, Geom. Topol.. Geometry & Topology, 17, 733-838 (2013) · Zbl 1267.19001 · doi:10.2140/gt.2013.17.733
[7] Blumberg, Andrew J.; Mandell, Michael A., Localization theorems in topological {H}ochschild homology and topological cyclic homology, Geom. Topol.. Geometry & Topology, 16, 1053-1120 (2012) · Zbl 1282.19004 · doi:10.2140/gt.2012.16.1053
[8] Corti\~{n}as, Guillermo; Haesemeyer, C.; Schlichting, M.; Weibel, C., Cyclic homology, cdh-cohomology and negative {\(K\)}-theory, Ann. of Math. (2). Annals of Mathematics. Second Series, 167, 549-573 (2008) · Zbl 1191.19003 · doi:10.4007/annals.2008.167.549
[9] Cisinski, Denis-Charles, Descente par \'{e}clatements en {\(K\)}-th\'{e}orie invariante par homotopie, Ann. of Math. (2). Annals of Mathematics. Second Series, 177, 425-448 (2013) · Zbl 1264.19003 · doi:10.4007/annals.2013.177.2.2
[10] Clausen, D.; Mathew, A.; Morrow, M., {\(K\)}-theory and topological cyclic homology of henselian pairs (2018)
[11] Clausen, D.; Mathew, A.; Naumann, N.; Noel, J., Descent in algebraic K-theory and a conjecture of {A}usoni-{R}ognes (2016)
[12] Corti\~{n}as, Guillermo, The obstruction to excision in {\(K\)}-theory and in cyclic homology, Invent. Math.. Inventiones Mathematicae, 164, 143-173 (2006) · Zbl 1092.19001 · doi:10.1007/s00222-005-0473-9
[13] Cuntz, Joachim; Quillen, Daniel, Excision in bivariant periodic cyclic cohomology, Invent. Math.. Inventiones Mathematicae, 127, 67-98 (1997) · Zbl 0889.46054 · doi:10.1007/s002220050115
[14] Corti\~{n}as, Guillermo; Thom, Andreas, Bivariant algebraic {\(K\)}-theory, J. Reine Angew. Math.. Journal f\`“{u}r die Reine und Angewandte Mathematik. [Crelle”s Journal], 610, 71-123 (2007) · Zbl 1152.19002 · doi:10.1515/CRELLE.2007.068
[15] Cuntz, Joachim, {\(K\)}-theory and {\(C\sp{\ast} \)}-algebras. Algebraic {\(K\)}-Theory, Number Theory, Geometry and Analysis, Lecture Notes in Math., 1046, 55-79 (1984) · Zbl 0548.46056
[16] Dundas, B. Ian; Goodwillie, Thomas G.; McCarthy, Randy, The Local Structure of Algebraic {K}-Theory, Algebr. Appl., 18, xvi+435 pp. (2013) · Zbl 1272.55002 · doi:10.1007/978-1-4471-4393-2_1
[17] Dundas, Bjørn Ian; Kittang, Harald Øyen, Excision for {\(K\)}-theory of connective ring spectra, Homology Homotopy Appl.. Homology, Homotopy and Applications, 10, 29-39 (2008) · Zbl 1145.19002 · doi:10.4310/HHA.2008.v10.n1.a2
[18] Dundas, Bjørn Ian; Kittang, Harald Øyen, Integral excision for {\(K\)}-theory, Homology Homotopy Appl.. Homology, Homotopy and Applications, 15, 1-25 (2013) · Zbl 1269.19002 · doi:10.4310/HHA.2013.v15.n1.a1
[19] Geisser, Thomas; Hesselholt, Lars, Bi-relative algebraic {\(K\)}-theory and topological cyclic homology, Invent. Math.. Inventiones Mathematicae, 166, 359-395 (2006) · Zbl 1107.19002 · doi:10.1007/s00222-006-0515-y
[20] Geisser, Thomas; Hesselholt, Lars, On the vanishing of negative {\(K\)}-groups, Math. Ann.. Mathematische Annalen, 348, 707-736 (2010) · Zbl 1203.19001 · doi:10.1007/s00208-010-0500-z
[21] Geisser, Thomas; Hesselholt, Lars, On relative and bi-relative algebraic {\(K\)}-theory of rings of finite characteristic, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 24, 29-49 (2011) · Zbl 1247.19003 · doi:10.1090/S0894-0347-2010-00682-0
[22] Goodwillie, Thomas G., Cyclic homology, derivations, and the free loopspace, Topology. Topology. An International Journal of Mathematics, 24, 187-215 (1985) · Zbl 0569.16021 · doi:10.1016/0040-9383(85)90055-2
[23] Goodwillie, Thomas G., Relative algebraic {\(K\)}-theory and cyclic homology, Ann. of Math. (2). Annals of Mathematics. Second Series, 124, 347-402 (1986) · Zbl 0627.18004 · doi:10.2307/1971283
[24] Haesemeyer, Christian, Descent properties of homotopy {\(K\)}-theory, Duke Math. J.. Duke Mathematical Journal, 125, 589-620 (2004) · Zbl 1079.19001 · doi:10.1215/S0012-7094-04-12534-5
[25] Hesselholt, Lars; Madsen, Ib, Cyclic polytopes and the {\(K\)}-theory of truncated polynomial algebras, Invent. Math.. Inventiones Mathematicae, 130, 73-97 (1997) · Zbl 0884.19004 · doi:10.1007/s002220050178
[26] Hoyois, M., The homotopy fixed points of the circle action on {H}ochschild homology (2015)
[27] Hesselholt, Lars; Scholze, P., {T}opological cyclic homology, Oberwolfach Rep.. Oberwolfach Reports, 15, 805-940 (2018) · Zbl 1409.00093 · doi:10.4171/OWR/2018/15
[28] Hoyois, Marc; Scherotzke, Sarah; Sibilla, Nicol\`o, Higher traces, noncommutative motives, and the categorified {C}hern character, Adv. Math.. Advances in Mathematics, 309, 97-154 (2017) · Zbl 1361.14014 · doi:10.1016/j.aim.2017.01.008
[29] Isaksen, Daniel C., A model structure on the category of pro-simplicial sets, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 353, 2805-2841 (2001) · Zbl 0978.55014 · doi:10.1090/S0002-9947-01-02722-2
[30] Karoubi, Max, Localisation de formes quadratiques. {I}, {II}, Ann. Sci. \'{E}cole Norm. Sup. (4). Annales Scientifiques de l’\'{E}cole Normale Sup\'{e}rieure. Quatri\`“eme S\'”{e}rie, 7, 359-403 (1974) · Zbl 0325.18011 · doi:10.24033/asens.1273
[31] Keller, Bernhard, On the cyclic homology of exact categories, J. Pure Appl. Algebra. Journal of Pure and Applied Algebra, 136, 1-56 (1999) · Zbl 0923.19004 · doi:10.1016/S0022-4049(97)00152-7
[32] Khan, A., Descent by quasi-smooth blow-ups in algebraic {\(K\)}-theory (2018)
[33] Kerz, Moritz; Strunk, Florian; Tamme, Georg, Algebraic {\(K\)}-theory and descent for blow-ups, Invent. Math.. Inventiones Mathematicae, 211, 523-577 (2018) · Zbl 1391.19007 · doi:10.1007/s00222-017-0752-2
[34] Lurie, Jacob, Higher Topos Theory, Ann. of Math. Stud., 170, xviii+925 pp. (2009) · Zbl 1175.18001 · doi:10.1515/9781400830558
[35] available at the author’s homepage, Higher algebra (2017)
[36] available at the author’s homepage, Spectral algebraic geometry (2018)
[37] Milne, James S., \'{E}tale Cohomology, Princeton Math. Ser., 33, xiii+323 pp. (1980) · Zbl 0433.14012 · doi:10.1515/9781400883981
[38] Morrow, Matthew, Pro {CDH}-descent for cyclic homology and {\(K\)}-theory, J. Inst. Math. Jussieu. Journal of the Institute of Mathematics of Jussieu. JIMJ. Journal de l’Institut de Math\'{e}matiques de Jussieu, 15, 539-567 (2016) · Zbl 1366.19005 · doi:10.1017/S1474748014000413
[39] Morrow, Matthew, Pro unitality and pro excision in algebraic {\(K\)}-theory and cyclic homology, J. Reine Angew. Math.. Journal f\`“{u}r die Reine und Angewandte Mathematik. [Crelle”s Journal], 736, 95-139 (2018) · Zbl 1393.19003 · doi:10.1515/crelle-2015-0007
[40] Neisendorfer, Joseph A., Homotopy groups with coefficients, J. Fixed Point Theory Appl.. Journal of Fixed Point Theory and Applications, 8, 247-338 (2010) · Zbl 1205.55001 · doi:10.1007/s11784-010-0020-1
[41] Nikolaus, Thomas; Scholze, Peter, On topological cyclic homology, Acta Math.. Acta Mathematica, 221, 203-409 (2018) · Zbl 1457.19007 · doi:10.4310/ACTA.2018.v221.n2.a1
[42] Oliver, Robert, Whitehead Groups of Finite Groups, London Math. Soc. Lect. Note Ser., 132, viii+349 pp. (1988) · Zbl 0636.18001 · doi:10.1017/CBO9780511600654
[43] Quillen, Daniel, Higher algebraic {\(K\)}-theory. {I}. Algebraic {\(K\)}-Theory, {I}: {H}igher {\(K\)}-Theories, Lecture Notes in Math., 341, 85-147 (1973) · Zbl 0292.18004 · doi:10.1007/BFb0067053
[44] Suslin, A. A., Excision in integer algebraic {\(K\)}-theory, Trudy Mat. Inst. Steklov.. Rossi\u{\i}skaya Akademiya Nauk. Trudy Matematicheskogo Instituta imeni V. A. Steklova, 208, 290-317 (1995) · Zbl 0871.19002
[45] Suslin, Andrei A.; Wodzicki, Mariusz, Excision in algebraic {K}-theory, Ann. of Math. (2). Annals of Mathematics. Second Series, 136, 51-122 (1992) · Zbl 0756.18008 · doi:10.2307/2946546
[46] Swan, Richard G., Excision in algebraic {\(K\)}-theory, J. Pure Appl. Algebra. Journal of Pure and Applied Algebra, 1, 221-252 (1971) · Zbl 0262.16025 · doi:10.1016/0022-4049(71)90020-X
[47] Tabuada, Gon\c{c}alo, {\(E_n\)}-regularity implies {\(E_{n-1} \)}-regularity, Doc. Math.. Documenta Mathematica, 19, 121-140 (2014) · Zbl 1291.14007
[48] Tabuada, Gon\c{c}alo, {\( \bold{A}^1\)}-homotopy theory of noncommutative motives, J. Noncommut. Geom.. Journal of Noncommutative Geometry, 9, 851-875 (2015) · Zbl 1345.14008 · doi:10.4171/JNCG/210
[49] Tamme, Georg, Excision in algebraic {\(K\)}-theory revisited, Compos. Math.. Compositio Mathematica, 154, 1801-1814 (2018) · Zbl 1395.18013 · doi:10.1112/s0010437x18007236
[50] Temkin, Michael, Desingularization of quasi-excellent schemes in characteristic zero, Adv. Math.. Advances in Mathematics, 219, 488-522 (2008) · Zbl 1146.14009 · doi:10.1016/j.aim.2008.05.006
[51] Thomason, R. W.; Trobaugh, Thomas, Higher algebraic {\(K\)}-theory of schemes and of derived categories. The {G}rothendieck {F}estschrift, {V}ol. {III}, Progr. Math., 88, 247-435 (1990) · doi:10.1007/978-0-8176-4576-2_10
[52] Vorst, Ton, Localization of the {\(K\)}-theory of polynomial extensions, Math. Ann.. Mathematische Annalen, 244, 33-53 (1979) · Zbl 0415.13005 · doi:10.1007/BF01420335
[53] Waldhausen, Friedhelm, Algebraic {\(K\)}-theory of topological spaces. {I}. Algebraic and Geometric Topology, {P}art 1, Proc. Sympos. Pure Math., XXXII, 35-60 (1978) · Zbl 0414.18010
[54] Weibel, Charles A., The {\(K\)}-Book: An Introduction to Algebraic \(K\)-Theory, Grad. Stud. Math., 145, xii+618 pp. (2013) · Zbl 1273.19001
[55] Wodzicki, Mariusz, Excision in cyclic homology and in rational algebraic {\(K\)}-theory, Ann. of Math. (2). Annals of Mathematics. Second Series, 129, 591-639 (1989) · Zbl 0689.16013 · doi:10.2307/1971518
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.