×

Choquet-Deny groups and the infinite conjugacy class property. (English) Zbl 1428.60013

Let \(G\) be a countable discrete group. A probability measure on \(G\) is nondegenerate if its support generates \(G\) as a semigroup. \(G\) is called a Choquet-Deny group, if for every nondegenerate probability measure \(\mu\) on \(G\), all bounded \(\mu\)-harmonic functions are constant. The authors show that a finitely generated group \(G\) is Choquet-Deny, if and only if it is virtually nilpotent. For general countable discrete groups, it is shown that \(G\) is Choquet-Deny if and only if none of its quotients has the infinite conjugacy class property. Moreover, when \(G\) is not Choquet-Deny, then this is witnessed by a symmetric, finite entropy, nondegenerate measure. For a partial result in the above direction see [W. Jaworski, Can. Math. Bull. 47, No. 2, 215–228 (2004; Zbl 1062.22010)].

MSC:

60B15 Probability measures on groups or semigroups, Fourier transforms, factorization

Citations:

Zbl 1062.22010
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Bader, Uri; Shalom, Yehuda, Factor and normal subgroup theorems for lattices in products of groups, Invent. Math.. Inventiones Mathematicae, 163, 415-454, (2006) · Zbl 1085.22005 · doi:10.1007/s00222-005-0469-5
[2] Bartholdi, Laurent; Erschler, Anna, Poisson-{F}urstenberg boundary and growth of groups, Probab. Theory Related Fields. Probability Theory and Related Fields, 168, 347-372, (2017) · Zbl 1417.60004 · doi:10.1007/s00440-016-0712-6
[3] Blackwell, David, On transient {M}arkov processes with a countable number of states and stationary transition probabilities, Ann. Math. Statist.. Annals of Mathematical Statistics, 26, 654-658, (1955) · Zbl 0066.11303 · doi:10.1214/aoms/1177728425
[4] Choquet, Gustave; Deny, Jacques, Sur l’\'{e}quation de convolution {\( \mu =\mu \ast \sigma \)}, C. R. Acad. Sci. Paris, 250, 799-801, (1960) · Zbl 0093.12802
[5] Duguid, A. M.; McLain, D. H., F{C}-nilpotent and {FC}-soluble groups, Proc. Cambridge Philos. Soc., 52, 391-398, (1956) · Zbl 0071.02204 · doi:10.1017/S030500410003139X
[6] Dynkin, E. B.; Maljutov, M. B., Random walk on groups with a finite number of generators, Dokl. Akad. Nauk SSSR. Doklady Akademii Nauk SSSR, 137, 1042-1045, (1961)
[7] Erschler, Anna, Boundary behavior for groups of subexponential growth, Ann. of Math. (2). Annals of Mathematics. Second Series, 160, 1183-1210, (2004) · Zbl 1089.20025 · doi:10.4007/annals.2004.160.1183
[8] Erschler, Anna, Liouville property for groups and manifolds, Invent. Math.. Inventiones Mathematicae, 155, 55-80, (2004) · Zbl 1043.60006 · doi:10.1007/s00222-003-0314-7
[9] Frisch, J.; Tamuz, O.; Ferdowsi, P. V., Strong amenability and the infinite conjugacy class property, (2018)
[10] Furman, Alex, Random walks on groups and random transformations. Handbook of Dynamical Systems, {V}ol. 1{A}, 931-1014, (2002) · Zbl 1053.60045 · doi:10.1016/S1874-575X(02)80014-5
[11] Furstenberg, Hillel; Glasner, Eli, Stationary dynamical systems. Dynamical Numbers–Interplay Between Dynamical Systems and Number Theory, Contemp. Math., 532, 1-28, (2010) · Zbl 1218.22004 · doi:10.1090/conm/532/10481
[12] Furstenberg, Harry, Noncommuting random products, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 108, 377-428, (1963) · Zbl 0203.19102 · doi:10.2307/1993589
[13] Furstenberg, Harry, Random walks and discrete subgroups of {L}ie groups. Advances in {P}robability and {R}elated {T}opics, {V}ol. 1, 1-63, (1971)
[14] Furstenberg, Harry, Boundary theory and stochastic processes on homogeneous spaces. Harmonic {A}nalysis on {H}omogeneous {S}paces ({P}roc. {S}ympos. {P}ure {M}ath., {V}ol. {XXVI}, {W}illiams {C}oll., {W}illiamstown, {M}ass., 1972), 193-229, (1973)
[15] Glasner, Shmuel, On {C}hoquet-{D}eny measures, Ann. Inst. H. Poincar\'{e} Sect. B (N.S.), 12, 1-10, (1976) · Zbl 0349.60006
[16] Glasner, Shmuel, Proximal Flows, Lect. Notes in Math., 517, viii+153 pp., (1976) · Zbl 0322.54017 · doi:10.1007/BFb0080139
[17] Guivarc’h, Yves, Croissance polynomiale et p\'{e}riodes des fonctions harmoniques, Bull. Soc. Math. France. Bulletin de la Soci\'{e}t\'{e} Math\'{e}matique de France, 101, 333-379, (1973) · Zbl 0294.43003 · doi:10.24033/bsmf.1764
[18] Jaworski, Wojciech, Countable amenable identity excluding groups, Canad. Math. Bull.. Canadian Mathematical Bulletin. Bulletin Canadien de Math\'{e}matiques, 47, 215-228, (2004) · Zbl 1062.22010 · doi:10.4153/CMB-2004-021-1
[19] Jaworski, Wojciech; Raja, C. Robinson Edward, The {C}hoquet-{D}eny theorem and distal properties of totally disconnected locally compact groups of polynomial growth, New York J. Math.. New York Journal of Mathematics, 13, 159-174, (2007) · Zbl 1118.60008
[20] Ka\u{\i}manovich, V. A., Examples of nonabelian discrete groups with nontrivial exit boundary, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI). Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta imeni V. A. Steklova Akademii Nauk SSSR (LOMI), 123, 167-184, (1983)
[21] Ka\u{\i}manovich, V. A.; Vershik, A. M., Random walks on discrete groups: boundary and entropy, Ann. Probab.. The Annals of Probability, 11, 457-490, (1983) · Zbl 0641.60009 · doi:10.1214/aop/1176993497
[22] McLain, D. H., Remarks on the upper central series of a group, Proc. Glasgow Math. Assoc., 3, 38-44, (1956) · Zbl 0072.25702
[23] Robinson, Derek J. S., Finiteness Conditions and Generalized Soluble Groups. {P}art 2, Ergeb. Math. Grenzgeb., 63, xiii+254 pp., (1972) · Zbl 0243.20033
[24] Rosenblatt, Joseph, Ergodic and mixing random walks on locally compact groups, Math. Ann.. Mathematische Annalen, 257, 31-42, (1981) · Zbl 0451.60011 · doi:10.1007/BF01450653
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.