×

Joint equidistribution of CM points. (English) Zbl 1431.11080

The mixing conjecture of P. Michel and A. Venkatesh [in: Proceedings of the International Congress of Mathematicians (ICM), Madrid, Spain, 2006. Volume II: Invited lectures. Zürich: European Mathematical Society (EMS), 421–457 (2006; Zbl 1157.11019)] implies a special case of the following conjecture about equidistribution of Galois orbits of special points on products of modular curves: Let \(X\) be a finite product of complex modular curves. Let \(\{ x_i \}_{i}\) be a sequence of special points on \(X\), i.e., each coordinate of \(x_i\) is a CM point. Denote by \(\mu_i\) the normalized counting measure on the finite Galois orbit of \(x_i\). If the sequence \(\{ x_i \}\) has finite intersection with any proper special subvariety of X, then \(\{ \mu_i \}_{i}\) converges weak-\(*\) to the uniform probability measure on \(X\).
This conjecture implies the André-Oort conjecture for products of modular curves, which has been proved by J. Pila [Ann. Math. (2) 173, No. 3, 1779–1840 (2011; Zbl 1243.14022)]. The Andrée-Oort conjecture in this setting states that the sequence \(\{ x_i \}_i\) above must be Zariski dense in \(X\). In the present paper, the author studies the question of equidistribution of Galois orbits. He proves (conditionally) the mixing conjecture of Michel and Venkatesh for toral packets with negative fundamental discriminants and split at two fixed primes, assuming all splitting fields have no exceptional Landau-Siegel zero. As a consequence, he establishes (conditionally) for arbitrary products of indefinite Shimura curves the equidistribution of Galois orbits of generic sequences of CM points all of whose components have the same fundamental discriminant, assuming the CM fields are split at two fixed primes and have no exceptional zero.
In fact, Yu. V. Linnik [Ergodic properties of algebraic fields. Berlin: Springer-Verlag (1968; Zbl 0162.06801)] has proved Duke’s theorem about equidistribution of a sequence packets of CM points on the complex modular curve assuming that there is a fixed prime \(p\) that splits in all the CM fields in the sequence. In this proof Linnik used his ergodic method to bootstrap a weak bound on the self-correlation of the periodic measure on a toral packet in intermediate scales to full equidistribution using a dynamical argument. It is this dynamical argument where the assumption of a fixed split prime is used.
M. Einsiedler et al. [Ann. Math. (2) 173, No. 2, 815–885 (2011; Zbl 1248.37009)] have introduced a variant of Linnik’s ergodic method, which fits into the framework of homogeneous dynamics. The assumption of a fixed split prime \(p\) implies that the adelic periodic measures corresponding to the packets in the sequence are all invariant under a split \(p\)-adic torus. The approach of Einsiedler, Lindenstrauss, Michel and Venkatesh [loc. cit.] has significant ramifications when combined with the modern methods of measure rigidity for toral actions. Although measure rigidity requires further splitting assumptions, it can imply strong equidistribution results based on weaker arithmetic input compared to methods of harmonic analysis. This strategy is the starting point for the author’s proof. The assumption that two primes are split in all the CM fields in the sequence is required for the joinings theorem of Einsiedler and Lindenstrauss to apply. This measure rigidity result, however, falls short of demonstrating equidistribution due to the possibility of intermediate algebraic measures supported on Hecke correspondences and their translates. The author’s contribution is a method to exclude intermediate measures for toral periods. In particular, he uses a geometric expansion of the cross-correlation between the periodic measure on a torus orbit and a Hecke correspondence, expressing it as a short shifted convolution sum.
Reviewer: Lei Yang (Beijing)

MSC:

11G18 Arithmetic aspects of modular and Shimura varieties
37A17 Homogeneous flows
PDFBibTeX XMLCite
Full Text: arXiv

References:

[1] Andr\'{e}, Yves, Finitude des couples d’invariants modulaires singuliers sur une courbe alg\'{e}brique plane non modulaire, J. Reine Angew. Math.. Journal f\`“{u}r die Reine und Angewandte Mathematik. [Crelle”s Journal], 505, 203-208, (1998) · Zbl 0918.14010 · doi:10.1515/crll.1998.118
[2] Burger, M.; Sarnak, P., Ramanujan duals. {II}, Invent. Math.. Inventiones Mathematicae, 106, 1-11, (1991) · Zbl 0774.11021 · doi:10.1007/BF01243900
[3] Bourgain, Jean; Sarnak, Peter; Rudnick, Ze\'{e}v, Local statistics of lattice points on the sphere. Modern Trends in Constructive Function Theory, Contemp. Math., 661, 269-282, (2016) · Zbl 1394.11059 · doi:10.1090/conm/661/13287
[4] Burgess, D. A., On character sums and {\(L\)}-series, Proc. London Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 12, 193-206, (1962) · Zbl 0106.04004 · doi:10.1112/plms/s3-12.1.193
[5] Cassels, J. W. S., Rational Quadratic Forms, London Math. Soc. Monogr., 13, xvi+413 pp., (1978) · Zbl 0395.10029
[6] Chelluri, Thyagaraju, Equidistribution of Roots of Quadratic Congruences, 33 pp., (2004)
[7] Conrey, J. B.; Iwaniec, H., The cubic moment of central values of automorphic {\(L\)}-functions, Ann. of Math. (2). Annals of Mathematics. Second Series, 151, 1175-1216, (2000) · Zbl 0973.11056 · doi:10.2307/121132
[8] Cornulier, Yves, On the {C}habauty space of locally compact abelian groups, Algebr. Geom. Topol.. Algebraic & Geometric Topology, 11, 2007-2035, (2011) · Zbl 1221.22008 · doi:10.2140/agt.2011.11.2007
[9] Clozel, Laurent; Oh, Hee; Ullmo, Emmanuel, Hecke operators and equidistribution of {H}ecke points, Invent. Math.. Inventiones Mathematicae, 144, 327-351, (2001) · Zbl 1144.11301 · doi:10.1007/s002220100126
[10] Clozel, Laurent; Ullmo, Emmanuel, \'{E}quidistribution des points de {H}ecke. Contributions to Automorphic Forms, Geometry, and Number Theory, 193-254, (2004) · Zbl 1068.11042
[11] Dickson, Leonard Eugene, Theory of linear groups in an arbitrary field, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 2, 363-394, (1901) · JFM 32.0131.03 · doi:10.2307/1986251
[12] Demillo, Richard A.; J. Lipton, Richard, A probabilistic remark on algebraic program testing, Information Processing Letters, 7, 193-195, (1978) · Zbl 0397.68011
[13] de la Bret\`eche, R.; Browning, T. D., Sums of arithmetic functions over values of binary forms, Acta Arith.. Acta Arithmetica, 125, 291-304, (2006) · Zbl 1159.11035 · doi:10.4064/aa125-3-6
[14] de la Bret\`“eche, R\'”{e}gis; Tenenbaum, G\'{e}rald, Moyennes de fonctions arithm\'{e}tiques de formes binaires, Mathematika. Mathematika. A Journal of Pure and Applied Mathematics, 58, 290-304, (2012) · Zbl 1284.11126 · doi:10.1112/S0025579311002154
[15] Duke, W., Hyperbolic distribution problems and half-integral weight {M}aass forms, Invent. Math.. Inventiones Mathematicae, 92, 73-90, (1988) · Zbl 0628.10029 · doi:10.1007/BF01393993
[16] Edixhoven, Bas, Special points on the product of two modular curves, Compositio Math.. Compositio Mathematica, 114, 315-328, (1998) · Zbl 0928.14019 · doi:10.1023/A:1000539721162
[17] Edixhoven, Bas, Special points on products of modular curves, Duke Math. J.. Duke Mathematical Journal, 126, 325-348, (2005) · Zbl 1072.14027 · doi:10.1215/S0012-7094-04-12624-7
[18] Einsiedler, Manfred; Katok, Anatole; Lindenstrauss, Elon, Invariant measures and the set of exceptions to {L}ittlewood’s conjecture, Ann. of Math. (2). Annals of Mathematics. Second Series, 164, 513-560, (2006) · Zbl 1109.22004 · doi:10.4007/annals.2006.164.513
[19] Einsiedler, Manfred; Lindenstrauss, Elon, Diagonal actions on locally homogeneous spaces. Homogeneous Flows, Moduli Spaces and Arithmetic, Clay Math. Proc., 10, 155-241, (2010) · Zbl 1225.37005
[20] Einsiedler, Manfred; Lindenstrauss, Elon, On measures invariant under tori on quotients of semisimple groups, Ann. of Math. (2). Annals of Mathematics. Second Series, 181, 993-1031, (2015) · Zbl 1316.22009 · doi:10.4007/annals.2015.181.3.3
[21] Einsiedler, Manfred; Lindenstrauss, Elon, Joinings of higher rank torus actions on homogeneous spaces, (2015) · Zbl 1316.22009
[22] Einsiedler, Manfred; Lindenstrauss, Elon; Michel, Philippe; Venkatesh, Akshay, Distribution of periodic torus orbits on homogeneous spaces, Duke Math. J.. Duke Mathematical Journal, 148, 119-174, (2009) · Zbl 1172.37003 · doi:10.1215/00127094-2009-023
[23] Einsiedler, Manfred; Lindenstrauss, Elon; Michel, Philippe; Venkatesh, Akshay, Distribution of periodic torus orbits and {D}uke’s theorem for cubic fields, Ann. of Math. (2). Annals of Mathematics. Second Series, 173, 815-885, (2011) · Zbl 1248.37009 · doi:10.4007/annals.2011.173.2.5
[24] Einsiedler, Manfred; Lindenstrauss, Elon; Michel, Philippe; Venkatesh, Akshay, The distribution of closed geodesics on the modular surface, and {D}uke’s theorem, Enseign. Math. (2). L’Enseignement Math\'{e}matique. Revue Internationale. 2e S\'{e}rie, 58, 249-313, (2012) · Zbl 1312.37032 · doi:10.4171/LEM/58-3-2
[25] Ellenberg, Jordan S.; Michel, Philippe; Venkatesh, Akshay, Linnik’s ergodic method and the distribution of integer points on spheres. Automorphic Representations and {\(L\)}-Functions, Tata Inst. Fundam. Res. Stud. Math., 22, 119-185, (2013) · Zbl 1371.11071
[26] Granville, Andrew; Koukoulopoulos, Dimitris; Matom\"{a}ki, Kaisa, When the sieve works, Duke Math. J.. Duke Mathematical Journal, 164, 1935-1969, (2015) · Zbl 1326.11055 · doi:10.1215/00127094-3120891
[27] Gross, Benedict H.; Zagier, Don B., Heegner points and derivatives of {\(L\)}-series, Invent. Math.. Inventiones Mathematicae, 84, 225-320, (1986) · Zbl 0608.14019 · doi:10.1007/BF01388809
[28] Howe, Roger E.; Moore, Calvin C., Asymptotic properties of unitary representations, J. Funct. Anal.. Journal of Functional Analysis, 32, 72-96, (1979) · Zbl 0404.22015 · doi:10.1016/0022-1236(79)90078-8
[29] Holowinsky, Roman, Sieving for mass equidistribution, Ann. of Math. (2). Annals of Mathematics. Second Series, 172, 1499-1516, (2010) · Zbl 1214.11054
[30] Holowinsky, Roman; Soundararajan, Kannan, Mass equidistribution for {H}ecke eigenforms, Ann. of Math. (2). Annals of Mathematics. Second Series, 172, 1517-1528, (2010) · Zbl 1211.11050
[31] Huxley, M. N., Exponential sums and lattice points. {III}, Proc. London Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 87, 591-609, (2003) · Zbl 1065.11079 · doi:10.1112/S0024611503014485
[32] Iwaniec, Henryk, Fourier coefficients of modular forms of half-integral weight, Invent. Math.. Inventiones Mathematicae, 87, 385-401, (1987) · Zbl 0606.10017 · doi:10.1007/BF01389423
[33] Jacquet, H.; Langlands, R. P., Automorphic Forms on {\({\rm GL}(2)\)}, Lecture Notes in Math., 114, vii+548 pp., (1970) · Zbl 0236.12010
[34] Kempf, George R., Instability in invariant theory, Ann. of Math. (2). Annals of Mathematics. Second Series, 108, 299-316, (1978) · Zbl 0406.14031 · doi:10.2307/1971168
[35] Khayutin, Ilya, Large deviations and effective equidistribution, Int. Math. Res. Not. IMRN. International Mathematics Research Notices. IMRN, 3050-3106, (2017) · Zbl 1406.37071 · doi:10.1093/imrn/rnw099
[36] Kneser, Martin, Galois-{K}ohomologie halbeinfacher algebraischer {G}ruppen \`“{u}ber {\({\germ p}\)}-adischen {K}\'”{o}rpern. {I}, Math. Z.. Mathematische Zeitschrift, 88, 40-47, (1965) · Zbl 0143.04702 · doi:10.1007/BF01112691
[37] Kowalski, E., The Large Sieve and its Applications. Arithmetic Geometry, Random Walks and Discrete Groups, Cambridge Tracts in Math., 175, xxii+293 pp., (2008) · Zbl 1177.11080 · doi:10.1017/CBO9780511542947
[38] Landau, E., {\`“{U}}ber Imagin{\'”{a}}r- quadratischer Zahlk{\`“{o}}rper, Nachrichten von der Gesellschaft der Wissenschaften zu G{\'”{o}}ttingen, Mathematisch-Physikalische Klasse, 1918, 285-295, (1918) · JFM 46.0258.04
[39] Lemmermeyer, Franz, The development of the principal genus theorem. The Shaping of Arithmetic after {C}. {F}. {G}auss’s {\it{D}isquisitiones Arithmeticae}, 529-561, (2007) · doi:10.1007/978-3-540-34720-0_20
[40] Linnik, Yu. V., Ergodic Properties of Algebraic Fields, translated from the Russian by M. S. Keane, {\em Ergeb. Math. Grenzgeb.} {\bf 45}, ix+192 pp., (1968) · Zbl 0162.06801
[41] Lindenstrauss, Elon, Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. (2). Annals of Mathematics. Second Series, 163, 165-219, (2006) · Zbl 1104.22015 · doi:10.4007/annals.2006.163.165
[42] Luo, Wenzhi; Rudnick, Ze\'{e}v; Sarnak, Peter, On the generalized {R}amanujan conjecture for {\({\rm GL}(n)\)}. Automorphic Forms, Automorphic Representations, and Arithmetic, Proc. Sympos. Pure Math., 66, 301-310, (1999) · Zbl 0965.11023
[43] Mumford, D.; Fogarty, J.; Kirwan, F., Geometric Invariant Theory, Ergeb. Math. Grenzgeb., 34, xiv+292 pp., (1994) · Zbl 0797.14004
[44] Michel, P., The subconvexity problem for {R}ankin-{S}elberg {\(L\)}-functions and equidistribution of {H}eegner points, Ann. of Math. (2). Annals of Mathematics. Second Series, 160, 185-236, (2004) · Zbl 1068.11033 · doi:10.4007/annals.2004.160.185
[45] Milne, J. S., Introduction to {S}himura varieties. Harmonic Analysis, the Trace Formula, and {S}himura Varieties, Clay Math. Proc., 4, 265-378, (2005) · Zbl 1148.14011
[46] Margulis, G. A.; Tomanov, G. M., Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math.. Inventiones Mathematicae, 116, 347-392, (1994) · Zbl 0816.22004 · doi:10.1007/BF01231565
[47] Michel, Philippe; Venkatesh, Akshay, Equidistribution, {\(L\)}-functions and ergodic theory: on some problems of {Y}u. {L}innik. International {C}ongress of {M}athematicians. {V}ol. {II}, 421-457, (2006) · Zbl 1157.11019
[48] Nagata, Masayoshi, Invariants of a group in an affine ring, J. Math. Kyoto Univ.. Journal of Mathematics of Kyoto University, 3, 369-377, (1963/1964) · Zbl 0146.04501 · doi:10.1215/kjm/1250524787
[49] Nair, Mohan, Multiplicative functions of polynomial values in short intervals, Acta Arith.. Acta Arithmetica, 62, 257-269, (1992) · Zbl 0768.11038 · doi:10.4064/aa-62-3-257-269
[50] Nair, Mohan; Tenenbaum, G\'{e}rald, Short sums of certain arithmetic functions, Acta Math.. Acta Mathematica, 180, 119-144, (1998) · Zbl 0917.11048 · doi:10.1007/BF02392880
[51] Pila, Jonathan, O-minimality and the {A}ndr\'{e}-{O}ort conjecture for {\( \Bbb C^n\)}, Ann. of Math. (2). Annals of Mathematics. Second Series, 173, 1779-1840, (2011) · Zbl 1243.14022 · doi:10.4007/annals.2011.173.3.11
[52] Pila, Jonathan; Tsimerman, Jacob, The {A}ndr\'{e}-{O}ort conjecture for the moduli space of abelian surfaces, Compos. Math.. Compositio Mathematica, 149, 204-216, (2013) · Zbl 1304.11055 · doi:10.1112/S0010437X12000589
[53] Reiner, I., Maximal Orders, London Math. Soc. Monogr., 5, xii+395 pp., (1975) · Zbl 1024.16008
[54] Sarnak, Peter C., Diophantine problems and linear groups. Proceedings of the {I}nternational {C}ongress of {M}athematicians, {V}ol. {I}, {II}, 459-471, (1991) · Zbl 0743.11018
[55] Schwartz, J. T., Fast probabilistic algorithms for verification of polynomial identities, J. Assoc. Comput. Mach.. Journal of the Association for Computing Machinery, 27, 701-717, (1980) · Zbl 0452.68050 · doi:10.1145/322217.322225
[56] Shahidi, Freydoon, On the {R}amanujan conjecture and finiteness of poles for certain {\(L\)}-functions, Ann. of Math. (2). Annals of Mathematics. Second Series, 127, 547-584, (1988) · Zbl 0654.10029 · doi:10.2307/2007005
[57] Shiu, P., A {B}run-{T}itchmarsh theorem for multiplicative functions, J. Reine Angew. Math.. Journal f\"{u}r die Reine und Angewandte Mathematik, 313, 161-170, (1980) · Zbl 0412.10030 · doi:10.1515/crll.1980.313.161
[58] Shende, Vivek; Tsimerman, Jacob, Equidistribution in {\({\rm Bun}_2(\Bbb{P}^1)\)}, Duke Math. J.. Duke Mathematical Journal, 166, 3461-3504, (2017) · Zbl 1426.11064 · doi:10.1215/00127094-2017-0025
[59] Tao, Terence, Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory, EMS Surv. Math. Sci.. EMS Surveys in Mathematical Sciences, 1, 1-46, (2014) · Zbl 1294.05044 · doi:10.4171/EMSS/1
[60] Tsimerman, Jacob, The {A}ndr\'{e}-{O}ort conjecture for {\( \mathcal{A}_g\)}, Ann. of Math. (2). Annals of Mathematics. Second Series, 187, 379-390, (2018) · Zbl 1415.11086 · doi:10.4007/annals.2018.187.2.2
[61] van der Corput, J. G., \"{U}ber {G}itterpunkte in der {E}bene, Math. Ann.. Mathematische Annalen, 81, 1-20, (1920) · JFM 47.0159.01 · doi:10.1007/BF01563613
[62] Zhang, Shou-Wu, Equidistribution of {CM}-points on quaternion {S}himura varieties, Int. Math. Res. Not.. International Mathematics Research Notices, 3657-3689, (2005) · Zbl 1096.14016 · doi:10.1155/IMRN.2005.3657
[63] Zippel, Richard, Probabilistic algorithms for sparse polynomials. Symbolic and Algebraic Computation, Lecture Notes in Comput. Sci., 72, 216-226, (1979) · Zbl 0418.68040 · doi:10.1007/3-540-09519-5_73
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.