×

Hyperbolic triangles without embedded eigenvalues. (English) Zbl 1407.58011

Any noncompact complete hyperbolic surface of finite area has the continuous spectrum \([1/4, +\infty)\). On the other hand, the existence of square integrable eigenfunctions is a very subtle problem. A conjecture due to Phillips and Sarnak says that a generic such hyperbolic surface should not have any square integrable functions whose eigenvalues lie in the continuous spectrum. Some previous work on this problem are conditional. In this paper, the authors study this conjecture for a model surface: hyperbolic triangles with one cusp, i.e., whether there exists square integrable eigenfunctions with respect to the Neumann boundary condition. They show that a generic such triangle does not have such eigenfunctions. The result is unconditional. To prove this result, the author study the behavior of the real-analytic eigenvalue branches of a degenerating family of triangles. A careful analysis of spectral projections near the crossings of these eigenvalue branches with the eigenvalue branches of a model operator is crucial.

MSC:

58J50 Spectral problems; spectral geometry; scattering theory on manifolds
35P99 Spectral theory and eigenvalue problems for partial differential equations
11F72 Spectral theory; trace formulas (e.g., that of Selberg)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Borisov, Denis; Freitas, Pedro, Asymptotics of {D}irichlet eigenvalues and eigenfunctions of the {L}aplacian on thin domains in {\( \Bbb R^d\)}, J. Funct. Anal.. Journal of Functional Analysis, 258, 893-912, (2010) · Zbl 1180.35397 · doi:10.1016/j.jfa.2009.07.014
[2] {Colin de Verdi\`“ere}, Yves, Pseudo-laplaciens. {I}, Ann. Inst. Fourier (Grenoble). Universit\'”e de Grenoble. Annales de l’Institut Fourier, 32, 275-286, (1982) · Zbl 0489.58034 · doi:10.5802/aif.890
[3] {Colin de Verdi\`“ere}, Yves, Pseudo-laplaciens. {II}, Ann. Inst. Fourier (Grenoble). Universit\'”e de Grenoble. Annales de l’Institut Fourier, 33, 87-113, (1983) · Zbl 0496.58016 · doi:10.5802/aif.917
[4] Deshouillers, J.-M.; Iwaniec, H.; Phillips, R. S.; Sarnak, P., Maass cusp forms, Proc. Nat. Acad. Sci. U.S.A.. Proceedings of the National Academy of Sciences of the United States of America, 82, 3533-3534, (1985) · Zbl 0566.10017 · doi:10.1073/pnas.82.11.3533
[5] Friedlander, Leonid; Solomyak, Michael, On the spectrum of the {D}irichlet {L}aplacian in a narrow strip, Israel J. Math.. Israel Journal of Mathematics, 170, 337-354, (2009) · Zbl 1173.35090 · doi:10.1007/s11856-009-0032-y
[6] Grieser, Daniel; Jerison, David, Asymptotics of the first nodal line of a convex domain, Invent. Math.. Inventiones Mathematicae, 125, 197-219, (1996) · Zbl 0857.31002 · doi:10.1007/s002220050073
[7] Hillairet, Luc; Judge, Chris, Generic spectral simplicity of polygons, Proc. Amer. Math. Soc.. Proceedings of the American Mathematical Society, 137, 2139-2145, (2009) · Zbl 1169.58007 · doi:10.1090/S0002-9939-09-09621-X
[8] Hillairet, Luc; Judge, Chris, Spectral simplicity and asymptotic separation of variables, Comm. Math. Phys.. Communications in Mathematical Physics, 302, 291-344, (2011) · Zbl 1234.35155 · doi:10.1007/s00220-010-1185-6
[9] Hillairet, Luc; Judge, Chris, Erratum to: {S}pectral simplicity and asymptotic separation of variables [\mr{2770015}], Comm. Math. Phys.. Communications in Mathematical Physics, 311, 839-842, (2012) · Zbl 1238.35067 · doi:10.1007/s00220-012-1467-2
[10] H\"ormander, Lars, An Introduction to Complex Analysis in Several Variables, North-Holland Mathematical Library, 7, xii+254 pp., (1990) · Zbl 0685.32001
[11] Judge, Christopher M., On the existence of {M}aass cusp forms on hyperbolic surfaces with cone points, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 8, 715-759, (1995) · Zbl 0846.11035 · doi:10.2307/2152928
[12] Judge, Christopher M., Small eigenvalues and maximal laminations on complete surfaces of negative curvature. In the Tradition of {A}hlfors-{B}ers. {IV}, Contemp. Math., 432, 93-105, (2007) · Zbl 1133.58024 · doi:10.1090/conm/432/08301
[13] Kato, Tosio, Perturbation Theory for Linear Operators, Classics in Math., xxii+619 pp., (1995) · Zbl 0836.47009
[14] Lax, Peter D.; Phillips, Ralph S., Scattering Theory for Automorphic Functions, 87, x+300 pp., (1976) · Zbl 0362.10022 · doi:10.1515/9781400881567-009
[15] Lax, Peter D.; Phillips, Ralph S., Scattering theory for automorphic functions, Bull. Amer. Math. Soc. (N.S.). American Mathematical Society. Bulletin. New Series, 2, 261-295, (1980) · Zbl 0442.10018 · doi:10.1090/S0273-0979-1980-14735-7
[16] Olver, F. W. J., Asymptotics and Special Functions, Comp. Sci. Appl. Math., xvi+572 pp., (1974) · Zbl 0303.41035
[17] Phillips, R.; Sarnak, P., On cusp forms for co-finite subgroups of {\({\rm PSL}(2,{\bf R})\)}, Invent. Math.. Inventiones Mathematicae, 80, 339-364, (1985) · Zbl 0558.10017 · doi:10.1007/BF01388610
[18] Phillips, R.; Sarnak, P., Perturbation theory for the {L}aplacian on automorphic functions, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 5, 1-32, (1992) · Zbl 0743.30039 · doi:10.2307/2152749
[19] Phillips, R.; Sarnak, P., Automorphic spectrum and {F}ermi’s {G}olden {R}ule, J. Anal. Math.. Journal d’Analyse Math\'ematique, 59, 179-187, (1992) · Zbl 0809.30035 · doi:10.1007/BF02790224
[20] Phillips, R.; Sarnak, P., Cusp forms for character varieties, Geom. Funct. Anal.. Geometric and Functional Analysis, 4, 93-118, (1994) · Zbl 0804.11038 · doi:10.1007/BF01898362
[21] Sarnak, Peter, Spectra of hyperbolic surfaces, Bull. Amer. Math. Soc. (N.S.). American Mathematical Society. Bulletin. New Series, 40, 441-478, (2003) · Zbl 1045.11033 · doi:10.1090/S0273-0979-03-00991-1
[22] Sarnak, Peter Clive, {P}rime {G}eodesic {T}heorems, 111 pp., (1980)
[23] Selberg, Atle, Collected Papers. {V}ol. {I}, vi+711 pp., (1989) · Zbl 0675.10001
[24] Wolpert, Scott A., Spectral limits for hyperbolic surfaces. {I}, Invent. Math.. Inventiones Mathematicae, 108, 67-89, (1992) · Zbl 0772.11016 · doi:10.1007/BF02100600
[25] Wolpert, Scott A., Spectral limits for hyperbolic surfaces. {II}, Invent. Math.. Inventiones Mathematicae, 108, 91-129, (1992) · Zbl 0772.11017 · doi:10.1007/BF02100601
[26] Wolpert, Scott A., Disappearance of cusp forms in special families, Ann. of Math. (2). Annals of Mathematics. Second Series, 139, 239-291, (1994) · Zbl 0826.11024 · doi:10.2307/2946582
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.