×

Anabelian geometry with étale homotopy types. (English) Zbl 1405.14053

In algebraic topology, there are topological spaces that can be rebuilt by their fundamental groups and by their homotopy types with higher homotopy groups in a more general case.
Likewise, in Grothendieck’s anabelian geometry, for an algebraic variety over a field, the absolute Galois group of the field has an action, as outer automorphisms, on the geometric fundamental group of the algebraic variety. In particular, for the case that the algebraic varieties are the spectra of number fields, the Neukirch-Uchida theorem says such varieties are determined by outer isomorphisms between their absolute Galois groups. Grothendieck conjectures that algebraic varieties can be determined by outer isomorphisms between their étale fundamental groups, i.e., the classical anabelian geometry with étale fundamental groups. Such algebraic varieties are now called anabelian varieties.
On the other hand, by Quillen’s simplicial homotopy theories in Grothendieck’s étale site, particularly with étale homotopy type functor from category of algebraic varieties to the homotopy category, one has étale homotopy type and higher étale homotopy groups of algebraic varieties.
In this paper, the authors discuss anabelian geometry with étale homotopy type for algebraic varieties over a finitely generated extension field of the rational field, which is taken as a generalisation of the classical anabelian geometry with étale fundamental groups since in addition there are higher étale homotopy groups of the étale homotopy type for the algebraic varieties that are involved in. By overcoming several unusual technical difficulties, they give a homotopy-theoretic reformulation of Mochizuki’s theorem on anabelian geometry over hyperbolic curves. Several other remarkable results including strongly hyperbolic Artin neighborhoods are also obtained in the paper.

MSC:

14F42 Motivic cohomology; motivic homotopy theory
14H30 Coverings of curves, fundamental group
14G32 Universal profinite groups (relationship to moduli spaces, projective and moduli towers, Galois theory)
14F35 Homotopy theory and fundamental groups in algebraic geometry
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M. Artin, ”Algebraic approximation of structures over complete local rings,” Inst. Hautes Études Sci. Publ. Math., vol. 36, iss. 36, pp. 23-58, 1969. · Zbl 0181.48802 · doi:10.1007/BF02684596
[2] M. Artin and B. Mazur, Etale Homotopy, New York: Springer-Verlag, 1986, vol. 100. · Zbl 0182.26001 · doi:10.1007/BFb0080957
[3] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Localizations, New York: Springer-Verlag, 1972, vol. 304. · Zbl 0259.55004 · doi:10.1007/978-3-540-38117-4
[4] P. Deligne and D. Mumford, ”The irreducibility of the space of curves of given genus,” Inst. Hautes Études Sci. Publ. Math., vol. 36, iss. 36, pp. 75-109, 1969. · Zbl 0181.48803 · doi:10.1007/BF02684599
[5] W. G. Dwyer and J. Spaliński, ”Homotopy theories and model categories,” in Handbook of Algebraic Topology, Amsterdam: North-Holland, 1995, pp. 73-126. · Zbl 0869.55018 · doi:10.1016/B978-044481779-2/50003-1
[6] A. Grothendieck and J. Dieudonné, Étude Locale des Schémas et des Morphismes de Schémas, , 1966, vol. 28. · Zbl 0144.19904 · doi:10.1007/BF02684343
[7] D. A. Edwards and H. M. Hastings, Čech and Steenrod Homotopy Theories with Applications to Geometric Topology, New York: Springer-Verlag, 1976, vol. 542. · Zbl 0334.55001 · doi:10.1007/BFb0081083
[8] M. D. Fried and M. Jarden, Field Arithmetic, third ed., New York: Springer-Verlag, 2008, vol. 11. · Zbl 1145.12001 · doi:10.1007/978-3-540-77270-5
[9] E. M. Friedlander, Étale Homotopy of Simplicial Schemes, Princeton, NJ: Princeton Univ. Press, 1982, vol. 104. · Zbl 0538.55001 · doi:10.1515/9781400881499
[10] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, New York: Springer-Verlag, 1967. · Zbl 0186.56802
[11] A. Grothendieck, ”Brief an G. Faltings (27.6.1983),” in Geometric Galois Actions, 1, Cambridge: Cambridge Univ. Press, 1997, vol. 242, pp. 49-58. · Zbl 0901.14002
[12] P. S. Hirschhorn, Model Categories and their Localizations, Providence, RI: Amer. Math. Soc., 2003, vol. 99. · Zbl 1017.55001
[13] Y. Hoshi, ”The Grothendieck conjecture for hyperbolic polycurves of lower dimension,” J. Math. Sci. Univ. Tokyo, vol. 21, iss. 2, pp. 153-219, 2014. · Zbl 1342.14059
[14] L. Illusie, Y. Laszlo, and F. Orgogozo, ”Introduction,” Astérisque, vol. 363-364, p. xiii-xix, 2014. · Zbl 1320.14002
[15] D. C. Isaksen, ”A model structure on the category of pro-simplicial sets,” Trans. Amer. Math. Soc., vol. 353, iss. 7, pp. 2805-2841, 2001. · Zbl 0978.55014 · doi:10.1090/S0002-9947-01-02722-2
[16] D. C. Isaksen, ”Strict model structures for pro-categories,” in Categorical Decomposition Techniques in Algebraic Topology, Basel: Birkhäuser, 2004, vol. 215, pp. 179-198. · Zbl 1049.18008
[17] D. C. Isaksen, ”Etale realization on the \(\mathbb A^1\)-homotopy theory of schemes,” Adv. Math., vol. 184, iss. 1, pp. 37-63, 2004. · Zbl 1073.14028 · doi:10.1016/S0001-8708(03)00094-X
[18] S. Mochizuki, ”The local pro-\(p\) anabelian geometry of curves,” Invent. Math., vol. 138, iss. 2, pp. 319-423, 1999. · Zbl 0935.14019 · doi:10.1007/s002220050381
[19] F. Morel and V. Voevodsky, ”\({\mathbf A}^1\)-homotopy theory of schemes,” Inst. Hautes Études Sci. Publ. Math., iss. 90, pp. 45-143 (2001), 1999. · Zbl 0983.14007 · doi:10.1007/BF02698831
[20] F. Pop, ”On Grothendieck’s conjecture of birational anabelian geometry,” Ann. of Math., vol. 139, iss. 1, pp. 145-182, 1994. · Zbl 0814.14027 · doi:10.2307/2946630
[21] F. Pop, ”Alterations and birational anabelian geometry,” in Resolution of Singularities, Basel: Birkhäuser, 2000, vol. 181, pp. 519-532. · Zbl 1022.14006
[22] A. Grothendieck, Revêtements étales et Groupe Fondamental, New York: Springer-Verlag, 1971, vol. 224. · Zbl 0234.14002 · doi:10.1007/BFb0058656
[23] M. Demazure and A. Grothendieck, Schémas en Groupes. II: Groupes de Type Multiplicatif, et Structure des Schémas en Groupes Généraux, New York: Springer-Verlag, 1970, vol. 152. · Zbl 0209.24201 · doi:10.1007/BFb0059005
[24] M. Artin, A. Grothendieck, and J. L. Verdier, Théorie des Topos et Cohomologie Étale des Schémas (SGA 4-3), New York: Springer-Verlag, 1972/1973, vol. 305. · Zbl 0245.00002 · doi:10.1007/BFb0070714
[25] P. Deligne, Cohomologie Étale, New York: Springer-Verlag, 1977, vol. 569. · Zbl 0345.00010 · doi:10.1007/BFb0091516
[26] Groupes de monodromie en géométrie algébrique. I, Grothendieck, A., Ed., New York: Springer-Verlag, 1972, vol. 288. · Zbl 0237.00013 · doi:10.1007/BFb0068688
[27] A. Schmidt, ”Extensions with restricted ramification and duality for arithmetic schemes,” Compositio Math., vol. 100, iss. 2, pp. 233-245, 1996. · Zbl 0873.14027
[28] . J-P. Serre, ”Zeta and \(L\) functions,” in Arithmetical Algebraic Geometry, New York: Harper & Row, 1965, pp. 82-92. · Zbl 0171.19602
[29] A. Tamagawa, ”The Grothendieck conjecture for affine curves,” Compositio Math., vol. 109, iss. 2, pp. 135-194, 1997. · Zbl 0899.14007 · doi:10.1023/A:1000114400142
[30] G. W. Whitehead, Elements of Homotopy Theory, New York: Springer-Verlag, 1978. · Zbl 0406.55001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.