×

The Littlewood-Richardson rule for Coschur modules. (English) Zbl 0659.20034

Coschur modules are the generalizaion to commutative rings of the modules constructed by Schur and Weyl in the classical theory of the general linear and symmetric groups over a field of characteristic zero. The present paper is based on the theory of Rota and Stein which deals with the tensor product of a symmetric algebra and an exterior algebra, called the letterplace algebra. The main objective of this paper is to give a universal version of the Littlewood-Richardson rule for the Coschur modules.
To each Young shape \(\sigma\), the authors associate a submodule of the letterplace algebra which is called Weyl module. This submodule is spanned by the determinants of bitableaux whose right tableau is of Deruyts type (that is, it contains only negative symbols and its ith column contains only the ith symbol of the alphabet), while its left tableau is any tableau of shape \(\sigma\) containing only positive symbols. The authors show that the Weyl module relative to a given Young shape is isomorphic naturally to the Coschur module relative to the conjugate shape and then they get the universal version of the Littlewood-Richardson rule for the tensor product of two Coschur modules by the corresponding result for Weyl modules. The authors also introduce a further class of modules, called Deruyts modules, which arises from a common generalization of both Weyl and Schur modules. The tensor product of two Weyl modules is isomorphic naturally to a submodule called the Skew submodule of a Deruyts module. They also show that this Skew submodule has a basis consisting of so called standard Yamanouchi shuffle elements by which they get a filtration of this module whose associated graded object is the direct sum of Weyl modules described by the classical Littlewood-Richardson rule.
Reviewer: Shi Jianyi

MSC:

20G05 Representation theory for linear algebraic groups
20C30 Representations of finite symmetric groups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akin, K.; Buchsbaum, D. A.; Weyman, J., Schur functors and Schur complexes, Adv. in Math., 44, 207-278 (1982) · Zbl 0497.15020
[2] Baclawśki, K., Combinatorial Algorithms for Young Tableaux, (Lecture notes for a course given at the University of California (1980), Spring Quarter: Spring Quarter San Diego)
[3] Barnabei, M.; Brini, A., Symmetrized skew determinants, Comm. Algebra, 15, 1455-1468 (1987) · Zbl 0656.20021
[4] G. BoffiAdv. in Math.; G. BoffiAdv. in Math. · Zbl 0659.20035
[5] Boffi, G., Filtrazioni associate alle formule di Pieri, Boll. Un. Mat. Ital. Alg. e Geom., 3, 6, 87-109 (1984)
[6] Buchsbaum, D. A., Generic Free Resolutions and Schur Complexes, (Boffi, G., Brandeis Lecture notes (1983)) · Zbl 1134.13009
[7] Carter, R. W.; Lusztig, G., On the modular representations of the general linear and symmetric ǵroups, Math. Z., 136, 193-242 (1974) · Zbl 0298.20009
[8] Clausen, M., Letterplace algebras and a characteristic-free approach to the representation theory of the general linear and symmetric groups, I, Adv. in Math., 33, 161-191 (1979) · Zbl 0425.20011
[9] Clausen, M., Letterplace algebras and a characteristic-free approach to the representation theory of the general linear and symmetric groups, II, Adv. in Math., 38, 152-177 (1980) · Zbl 0454.20009
[10] De Concini, C.; Eisenbud, D.; Procesi, C., Young diagrams and determinantal varieties, Invent. Math., 56, 129-165 (1980) · Zbl 0435.14015
[11] Dieudonné, J.; Carrell, J. B., Invariant theory, old and new, (Adv́. in Math., 4 (1970), Academic Press: Academic Press New York/London), 1-80, Reprinted by · Zbl 0196.05802
[12] Doubilet, P.; Rota, G.-C, Skew-symmetric invariant theory, Adv. in Math., 21, 196-201 (1976) · Zbl 0361.15024
[13] Doubilet, P.; Rota, G.-C; Stein, J., On the foundations of combinatorial theory. IX. Combinatorial methods in invariant theory, Stud. Appl. Math., 53, 185-216 (1974) · Zbl 0426.05009
[14] Green, J. A., Polynomial Representations of \(GL_n\), (Lecture Notes in Mathematics, Vol. 830 (1980), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0451.20037
[15] Higman, G., Representations of general linear groups and varieties of \(p\)-groups, (Proceedings, Int. Conf. Theory of Groups. Proceedings, Int. Conf. Theory of Groups, Austral. Nat. Univ. Canberra, 1965 (1967), Gordon & Breach: Gordon & Breach New York) · Zbl 0242.20040
[16] James, G. D., A characteristic-free approach to the representation theory of \(S_n\), J. Algebra, 46, 430-450 (1977) · Zbl 0358.20011
[17] James, G. D.; Kerber, A., The Representation Theory of the Symmetric Group, (Encyclopedia of Math. Appl., Vol. 16 (1981), Addison-Wesley: Addison-Wesley Reading, MA)
[18] Lascoux, A., Polynômes symétriques, foncteurs de Schur et Grassmanniennes, (Thèse (1977), Université de Paris VII) · Zbl 0364.05008
[19] Littlewood, D. E., The Theory of Group Characters (1950), Oxford Univ. Press (Clarendon): Oxford Univ. Press (Clarendon) Oxford · Zbl 0011.25001
[20] Littlewood, D. E.; Richardson, A. R., Group characters and algebra, Philos. Trans. Roy. Soc. London Ser. A, 233, 99-141 (1934) · Zbl 0009.20203
[21] Macdonald, I. G., Symmetric Functions and Hall Polynomials (1979), Oxford Univ. Press (Clarendon): Oxford Univ. Press (Clarendon) Oxford · Zbl 0487.20007
[22] Rota, G.-C; Grosshans, F.; Stein, J., Symbolic method in invariant theory, (Proc. Natl. Acad. Sci. U.S.A., 83 (1986)), 844-847 · Zbl 0613.15026
[23] G.-C. Rota and J. Stein; G.-C. Rota and J. Stein
[24] Schur, I., Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen, (Dissertation (1901)), Berlin · JFM 32.0165.04
[25] Schur, I., Über die rationalen Darstellungen der allgemeinen linearen Gruppe, Sb. Ak. Berlin, 58-75 (1927) · JFM 53.0108.05
[26] Schutzenberger, M. P., La correspondance de Robinson, (Foata, D., Combinatoire et représentation du groupe symétrique, Strasbourg, 1976. Combinatoire et représentation du groupe symétrique, Strasbourg, 1976, Lecture Notes in Mathematics, Vol. 579 (1977), Springer-Verlag: Springer-Verlag New York) · Zbl 0398.05011
[27] Stein, J., Hoof Algebra Structures on Tensor Products of Z-Modules, (Thesis (1980), Harvard University)
[28] Thomas, G. P., Baxter Algebras and Schur Functions, (Thesis (1974)), Swansea
[29] Tomber, J., Two new functors from modules to algebras, J. Algebra, 48, 80-104 (1977)
[30] Wagner, B., Symmetrische Polynome und Darstellungen der symmetrischen Gruppen (1975/1976), Diplomarbeit: Diplomarbeit Aachen
[31] Weyl, H., The Classical Groups (1946), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · JFM 65.0058.02
[32] Yamanouchi, T., On the construction of unitary irreducible representations of the symmetric group, Proc. Phys. Math. Soc. Japan, 19, 3, 436-450 (1937) · JFM 63.0079.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.