×

On torsion in the cohomology of locally symmetric varieties. (English) Zbl 1345.14031

The paper constructs Galois representations associated to Hecke eigenclasses in the torsion cohomology of \(\mathrm{GL}_n\). This holds over a field which is either totally real or CM, assuming conjectures of J. Arthur [The endoscopic classification of representations. Orthogonal and symplectic groups. Providence, RI: American Mathematical Society (AMS) (2013; Zbl 1310.22014)], and without these for CM fields containing an imaginary quadratic field. For the proof the classes are realised in the boundary of Siegel spaces. For these an innovative new technique is used: The infinite cover defined by level-\(p\)-structures of all orders is a perfectoid space which extends to the minimal compactification and admits a Hodge-Tate period map to the dual compact space. Its singular cohomology is described by coherent cohomology, and Hecke eigenclasses can be lifted to classes which are not torsion. For these the machinery of the trace formula allows to construct Galois representations.

MSC:

14G20 Local ground fields in algebraic geometry
11F46 Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms
11S37 Langlands-Weil conjectures, nonabelian class field theory
14G35 Modular and Shimura varieties
11G18 Arithmetic aspects of modular and Shimura varieties
22E50 Representations of Lie and linear algebraic groups over local fields

Citations:

Zbl 1310.22014
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] The Stacks Project.
[2] A. Abbes and A. Mokrane, ”Sous-groupes canoniques et cycles évanescents \(p\)-adiques pour les variétés abéliennes,” Publ. Math. Inst. Hautes Études Sci., vol. 99, pp. 117-162, 2004. · Zbl 1062.14057
[3] F. Andreatta and C. Gasbarri, ”The canonical subgroup for families of abelian varieties,” Compos. Math., vol. 143, iss. 3, pp. 566-602, 2007. · Zbl 1219.11087
[4] J. Arthur, The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups, Providence, RI: Amer. Math. Soc., 2013. · Zbl 1310.22014
[5] A. Ash, ”Galois representations and cohomology of \({ GL}(n,\mathbb Z)\),” in Séminaire de Théorie des Nombres, Paris, 1989-90, Boston: Birkhäuser, 1992, vol. 102, pp. 9-22. · Zbl 0754.11016
[6] A. Ash, ”Galois representations attached to mod \(p\) cohomology of \({ GL}(n,{\mathbf Z})\),” Duke Math. J., vol. 65, iss. 2, pp. 235-255, 1992. · Zbl 0774.11024
[7] A. Ash, D. Doud, and D. Pollack, ”Galois representations with conjectural connections to arithmetic cohomology,” Duke Math. J., vol. 112, iss. 3, pp. 521-579, 2002. · Zbl 1023.11025
[8] A. Ash and W. Sinnott, ”An analogue of Serre’s conjecture for Galois representations and Hecke eigenclasses in the mod \(p\) cohomology of \({ GL}(n,{\mathbf Z})\),” Duke Math. J., vol. 105, iss. 1, pp. 1-24, 2000. · Zbl 1015.11018
[9] W. L. Baily Jr. and A. Borel, ”Compactification of arithmetic quotients of bounded symmetric domains,” Ann. of Math., vol. 84, pp. 442-528, 1966. · Zbl 0154.08602
[10] T. Barnet-Lamb, D. Geraghty, M. Harris, and R. Taylor, ”A family of Calabi-Yau varieties and potential automorphy II,” Publ. Res. Inst. Math. Sci., vol. 47, iss. 1, pp. 29-98, 2011. · Zbl 1264.11044
[11] W. Bartenwerfer, ”Der erste Riemannsche Hebbarkeitssatz im nichtarchimedischen Fall,” J. Reine Angew. Math., vol. 286/287, pp. 144-163, 1976. · Zbl 0332.32019
[12] N. Bergeron and A. Venkatesh, ”The asymptotic growth of torsion homology for arithmetic groups,” J. Inst. Math. Jussieu, vol. 12, iss. 2, pp. 391-447, 2013. · Zbl 1266.22013
[13] A. Borel and J. -P. Serre, ”Corners and arithmetic groups,” Comment. Math. Helv., vol. 48, pp. 436-491, 1973. · Zbl 0274.22011
[14] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean Analysis. A Systematic Approach to Rigid Analytic Geometry, Berlin: Springer-Verlag, 1984, vol. 261. · Zbl 0539.14017
[15] S. Bosch and W. Lütkebohmert, ”Formal and rigid geometry. I. Rigid spaces,” Math. Ann., vol. 295, iss. 2, pp. 291-317, 1993. · Zbl 0808.14017
[16] K. Buzzard and T. Gee, The conjectural connections between automorphic representations and Galois representations. · Zbl 1377.11067
[17] F. Calegari and M. Emerton, ”Completed cohomology-a survey,” in Non-Abelian Fundamental Groups and Iwasawa Theory, Cambridge: Cambridge Univ. Press, 2012, vol. 393, pp. 239-257. · Zbl 1288.11056
[18] F. Calegari and D. Geraghty, Modularity lifting theorems beyond the Taylor-Wiles method, 2012. · Zbl 1476.11078
[19] A. Caraiani and B. V. LeHung, On the image of complex conjugation in certain Galois representations, 2014.
[20] G. Chenevier, ”The \(p\)-adic analytic space of pseudocharacters of a profinite group, and pseudorepresentations over arbitrary rings,” in Automorphic Forms and Galois Representations: Volume 1, Cambridge: Cambridge University Press, 2014, vol. 414. · Zbl 1350.11063
[21] G. Chenevier and M. Harris, ”Construction of automorphic Galois representations, II,” Camb. J. Math., vol. 1, iss. 1, pp. 53-73, 2013. · Zbl 1310.11062
[22] L. Clozel, ”Motifs et formes automorphes: applications du principe de fonctorialité,” in Automorphic Forms, Shimura Varieties, and \(L\)-Functions, Vol. I, Boston: Academic Press, 1990, vol. 10, pp. 77-159. · Zbl 0705.11029
[23] L. Clozel, ”Représentations galoisiennes associées aux représentations automorphes autoduales de \({ GL}(n)\),” Inst. Hautes Études Sci. Publ. Math., vol. 73, pp. 97-145, 1991. · Zbl 0739.11020
[24] B. Conrad, Higher-level canonical subgroups in Abelian varieties, 2006.
[25] P. Deligne and M. Rapoport, ”Les schémas de modules de courbes elliptiques,” in Modular Functions of One Variable, II, New York: Springer-Verlag, 1973, vol. 349, pp. 143-316. · Zbl 0281.14010
[26] P. Deligne, ”Travaux de Shimura,” in Séminaire Bourbaki, 23ème Année (1970/71), Exp. No. 389, New York: Springer-Verlag, 1971, vol. 244, pp. 123-165. · Zbl 0225.14007
[27] G. Faltings, ”Arithmetic varieties and rigidity,” in Seminar on Number Theory, Paris 1982-83, Birkhäuser, Boston, 1984, pp. 63-77. · Zbl 0549.14010
[28] G. Faltings, ”A relation between two moduli spaces studied by V. G. Drinfeld,” in Algebraic Number Theory and Algebraic Geometry, Providence, RI: Amer. Math. Soc., 2002, vol. 300, pp. 115-129. · Zbl 1062.14059
[29] G. Faltings and C. Chai, Degeneration of Abelian Varieties, New York: Springer-Verlag, 1990, vol. 22. · Zbl 0744.14031
[30] L. Fargues, ”La filtration canonique des points de torsion des groupes \(p\)-divisibles,” Ann. Sci. Éc. Norm. Supér., vol. 44, iss. 6, pp. 905-961, 2011. · Zbl 1331.14044
[31] L. Fargues, A. Genestier, and V. Lafforgue, L’isomorphisme Entre les Tours de Lubin-Tate et de Drinfeld, Basel: Birkhäuser, 2008, vol. 262. · Zbl 1136.14001
[32] J. Franke, ”Harmonic analysis in weighted \(L_2\)-spaces,” Ann. Sci. École Norm. Sup., vol. 31, iss. 2, pp. 181-279, 1998. · Zbl 0938.11026
[33] O. Gabber and L. Ramero, Almost Ring Theory, New York: Springer-Verlag, 2003, vol. 1800. · Zbl 1045.13002
[34] E. Z. Goren and P. L. Kassaei, ”The canonical subgroup: a “subgroup-free” approach,” Comment. Math. Helv., vol. 81, iss. 3, pp. 617-641, 2006. · Zbl 1122.11037
[35] M. Harris, K. -W. Lan, R. Taylor, and J. Thorne, Galois representations for regular algebraic cusp forms over CM fields.
[36] M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Princeton, NJ: Princeton Univ. Press, 2001, vol. 151. · Zbl 1036.11027
[37] R. Huber, ”Continuous valuations,” Math. Z., vol. 212, iss. 3, pp. 455-477, 1993. · Zbl 0788.13010
[38] R. Huber, Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Braunschweig: Friedr. Vieweg & Sohn, 1996, vol. E30. · Zbl 0868.14010
[39] L. Illusie, Complexe Cotangent et Déformations. I, New York: Springer-Verlag, 1971, vol. 239. · Zbl 0224.13014
[40] L. Illusie, Complexe Cotangent et Déformations. II, New York: Springer-Verlag, 1972, vol. 283. · Zbl 0238.13017
[41] L. Illusie, ”Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck),” in Seminar on Arithmetic Bundles: The Mordell Conjecture, , 1985, vol. 127, pp. 151-198. · Zbl 1182.14050
[42] J. de Jong and M. van der Put, ”Étale cohomology of rigid analytic spaces,” Doc. Math., vol. 1, p. no. 01, 1-56, 1996. · Zbl 0922.14012
[43] N. M. Katz, ”\(p\)-adic properties of modular schemes and modular forms,” in Modular Functions of One Variable, III, New York: Springer-Verlag, 1973, vol. 350, pp. 69-190. · Zbl 0271.10033
[44] K. S. Kedlaya and R. Liu, Relative \(p\)-adic Hodge Theory, I: Foundations, , 2015, vol. 371. · Zbl 1370.14025
[45] R. E. Kottwitz, ”On the \(\lambda\)-adic representations associated to some simple Shimura varieties,” Invent. Math., vol. 108, iss. 3, pp. 653-665, 1992. · Zbl 0765.22011
[46] J. Lubin, ”Canonical subgroups of formal groups,” Trans. Amer. Math. Soc., vol. 251, pp. 103-127, 1979. · Zbl 0431.14014
[47] C. Moeglin and J. -L. Waldspurger, Stabilisation de la formule des traces tordue X: stabilisation spectrale, 2014.
[48] C. P. Mok, ”Endoscopic classification of representations of quasi-split unitary groups,” Mem. Amer. Math. Soc., vol. 235, iss. 1108, p. vi, 2015. · Zbl 1316.22018
[49] S. Morel, On the Cohomology of Certain Noncompact Shimura Varieties, Princeton, NJ: Princeton Univ. Press, 2010, vol. 173. · Zbl 1233.11069
[50] J. Pfaff, ”Exponential growth of homological torsion for towers of congruence subgroups of Bianchi groups,” Ann. Global Anal. Geom., vol. 45, iss. 4, pp. 267-285, 2014. · Zbl 1323.11031
[51] V. Pilloni and B. Stroh, Cohomologie cohérente et représentations galoisiennes, 2015. · Zbl 1357.14033
[52] J. Rabinoff, ”Higher-level canonical subgroups for \(p\)-divisible groups,” J. Inst. Math. Jussieu, vol. 11, iss. 2, pp. 363-419, 2012. · Zbl 1285.14047
[53] P. Scholze, ”Perfectoid spaces: a survey,” in Current Developments in Mathematics 2012, Somerville, MA: Int. Press, 2013, pp. 193-227. · Zbl 1327.14008
[54] P. Scholze and J. Weinstein, ”Moduli of \(p\)-divisible groups,” Camb. J. Math., vol. 1, iss. 2, pp. 145-237, 2013. · Zbl 1349.14149
[55] P. Scholze, ”Perfectoid spaces,” Publ. Math. Inst. Hautes Études Sci., vol. 116, pp. 245-313, 2012. · Zbl 1263.14022
[56] P. Scholze, ”\(p\)-adic Hodge theory for rigid-analytic varieties,” Forum Math. Pi, vol. 1, p. 1, 2013. · Zbl 1297.14023
[57] S. W. Shin, On the cohomological base change for unitary similitude groups, 2012. · Zbl 1245.14028
[58] S. W. Shin, ”Galois representations arising from some compact Shimura varieties,” Ann. of Math., vol. 173, iss. 3, pp. 1645-1741, 2011. · Zbl 1269.11053
[59] R. Taylor, ”Galois representations associated to Siegel modular forms of low weight,” Duke Math. J., vol. 63, iss. 2, pp. 281-332, 1991. · Zbl 0810.11033
[60] R. Taylor and A. Wiles, ”Ring-theoretic properties of certain Hecke algebras,” Ann. of Math., vol. 141, iss. 3, pp. 553-572, 1995. · Zbl 0823.11030
[61] M. Temkin, ”On local properties of non-Archimedean analytic spaces,” Math. Ann., vol. 318, iss. 3, pp. 585-607, 2000. · Zbl 0972.32019
[62] Y. Tian, ”Canonical subgroups of Barsotti-Tate groups,” Ann. of Math., vol. 172, iss. 2, pp. 955-988, 2010. · Zbl 1203.14026
[63] O. Venjakob, ”On the structure theory of the Iwasawa algebra of a \(p\)-adic Lie group,” J. Eur. Math. Soc. \((\)JEMS\()\), vol. 4, iss. 3, pp. 271-311, 2002. · Zbl 1049.16016
[64] A. Wiles, ”On ordinary \(\lambda\)-adic representations associated to modular forms,” Invent. Math., vol. 94, iss. 3, pp. 529-573, 1988. · Zbl 0664.10013
[65] A. Wiles, ”Modular elliptic curves and Fermat’s last theorem,” Ann. of Math., vol. 141, iss. 3, pp. 443-551, 1995. · Zbl 0823.11029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.