×

Endomorphisms and torsion of Abelian varieties. (English) Zbl 0632.14035

It is proved the following result which is a final solution of the torsion problem for abelian varieties A over the maximal abelian extension \(K^{ab}\) of a given number field K. Let A be K-isogenous to the product \(X_ 1\times...\times X_ n\) of simple abelian varieties \(X_ i\) over K. Then the torsion subgroup \(A(K^{ab})_{tors}\) is finite iff all \(X_ i\) are not of CM-type over K (1\(\leq i\leq h)\). For CM-type A we have \(A(K^{ab})_{tors}=A(\bar K)_{tors}\) where \(\bar K\) is the algebraic closure of K.
Reviewer: A.Parshin

MSC:

14K05 Algebraic theory of abelian varieties
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] F. A. Bogomolov, Sur l’algébraicité des représentations \(l\)-adiques , C. R. Acad. Sci. Paris 290 (1980), 701-704. · Zbl 0457.14020
[2] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern , Invent. Math. 73 (1983), no. 3, 349-366. · Zbl 0588.14026 · doi:10.1007/BF01388432
[3] H. Imai, A remark on the rational points of abelian varieties with values in cyclotomic \(Z\sbp\)-extensions , Proc. Japan Acad. 51 (1975), 12-16. · Zbl 0323.14010 · doi:10.3792/pja/1195518722
[4] Yu. I. Manin, The Mordell-Weil theorem , Appendix to [7]. · Zbl 0863.01027
[5] Yu. I. Manin, Cyclotomic fields and modular curves , Russian Math. Surveys 26 (1971), 7-78. · Zbl 0266.14012 · doi:10.1070/rm1971v026n06ABEH001272
[6] B. Mazur, Rational points of abelian varieties with values in towers of number fields , Invent. Math. 18 (1972), 183-266. · Zbl 0245.14015 · doi:10.1007/BF01389815
[7] D. Mumford, Abelian Varieties , Oxford University Press (1974). · Zbl 0326.14012
[8] K. A. Ribet, Torsion points of abelian varieties in cyclotomic extensions , pp. 315-319. Appendix to N. M. Katz and S. Lang, Finiteness theorems in geometric classified theory, L’Enseignement Math. 27 (1981), 285-319.
[9] K. A. Ribet, Galois action on division points of abelian varieties with real multiplications , Amer. J. of Math. 98 (1976), no. 3, 751-804. JSTOR: · Zbl 0348.14022 · doi:10.2307/2373815
[10] J.-P. Serre and J. Tate, Good reduction of abelian varieties , Ann. of Math. (2) 88 (1968), 492-517. JSTOR: · Zbl 0172.46101 · doi:10.2307/1970722
[11] G. Shimura, Introduction to the arithmetic theory of automorphic functions , Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971. · Zbl 0221.10029
[12] Yu. G. Zarhin, A finiteness theorem for unpolarized abelian varieties over number fields with prescribed places of bad reduction , Invent. Math. 79 (1985), no. 2, 309-321. · Zbl 0557.14024 · doi:10.1007/BF01388976
[13] G. Yu. Zarhin, Torsion of Abelian varieties in finite characteristic , Math. Notes 22 (1978), 493-498. · Zbl 0419.14021 · doi:10.1007/BF01147687
[14] Yu. G. Zarhin and A. N. Parshin, Finiteness problems in Diophantine geometry , pp. 369-438. Appendix to the Russian translation of S. Lang, Fundamentals of Diophantine Geometry, Mir, Moscow, 1986. · Zbl 0672.14012
[15] J.-P. Serre, Résumé des cours de 1984-1985 , Annuaire du Collège de France, Paris (1985).
[16] J.-P. Serre, Résumé des cours de 1985-1986 , Annuaire du Collège de France, Paris (1986).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.