×

Towards an algebro-geometric interpretation of the Neumann system. (English) Zbl 0582.35102

The author considers a point moving on the sphere \(\xi^ 2_ 1+...+\xi^ 2_ n=1\) under the influence of a quadratic potential \(\phi (\xi)=-\sum x_ i\xi^ 2_ i.\) The differential equation describing this motion is \({\ddot \xi}{}_ i+q\xi_ i=x_ i\xi_ i\), \(q=\sum \xi^ 2_ i+x_ i\xi^ 2_ i\), \(\xi^ 2_ 1+...+\xi^ 2_ n=1\) (Neumann’s system). This problem was solved via (ultra-elliptic) quadratures by Neumann for \(n=3\). Neumann’s system is closely related to the Burchnall-Chaundy-Krichever theory of second order differential operators \(D^ 2+q(t)\). The author derives from this theory Lax equations and constants of motion for Neumann’s system.
Reviewer: A.M.Shermenev

MSC:

35Q99 Partial differential equations of mathematical physics and other areas of application
35P05 General topics in linear spectral theory for PDEs
14H99 Curves in algebraic geometry
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. ADLER AND P. VAN MOERBEKE, (a) Completely integrable systems, Euclidean Lie algebras, and curves, (b) Linearization of Hamiltonian systems, Jacobi varieties and representation theory, Adv. Math. 38 (1980), 267-379. · Zbl 0455.58017 · doi:10.1016/0001-8708(80)90007-9
[2] H. F. BAKER, Note on the foregoing paper, Proc. Roy. Soc. A, 118 (1928), 584-593 · JFM 54.0439.02
[3] J. L. BURCHNALL AND T. W. CHAUNDY, Commutative ordinary differential operators, Proc London Math. Soc. Ser. 2, 21 (1922), 420-440. · JFM 49.0311.03
[4] J. L. BURCHNALL AND T. W. CHAUNDY, Commutative ordinary differential operators, Proc Roy. Soc. A, 118 (1928), 557-583. · JFM 54.0439.02
[5] J, L. BURCHNALL AND T. W. CHAUNDY, Commutative ordinary differential Operators II. The identity Pn = Qm, Proc. Roy. Soc. A, 134 (1931), 471-485. · Zbl 0003.25701 · doi:10.1098/rspa.1931.0208
[6] I. M. CHEREDNIK, Differential equations for the Baker-Akhiezer functions of algebrai curves, Funkts. Anal. Prilozh. 12 (3) (1978), 45-54. · Zbl 0385.35019
[7] P. A. DEIFT, F. LUND AND E. TRUBOWITZ, Nonlinear wave equations and constraine harmonic motion, Comm. Math. Phys. 74 (1980), 141-188. · Zbl 0435.35072 · doi:10.1007/BF01197756
[8] R. DEVANEY, Transversal homoclinic orbits in an integrable system, Am. J. Math. 10 (1978), 631-648. JSTOR: · Zbl 0406.58019 · doi:10.2307/2373844
[9] B. A. DUBROVIN, V. B. MATVEEV AND S. P. NOVIKOV, Nonlinear equations of Korteweg-d Vries type, finite zone linear operators, and abelian varieties, Russ. Math. Surveys 31 (1) (1976), 59-164. · Zbl 0326.35011
[10] F. EHLERS AND H. KNO’RRER, An algebro-geometric interpretation of the Backlund trans formation for the Korteweg-de Vries equation, Comment. Math. Helv. 57 (1982), 1-10. · Zbl 0516.35071 · doi:10.1007/BF02565842
[11] C. GARDNER, J. M. GREENE, M. D. KRUSKAL AND R. M. MIURA, Korteweg-de Vries equatio and generalizations VI. Comm. Pure Appl. Math. 27 (1974), 97-133. · Zbl 0291.35012 · doi:10.1002/cpa.3160270108
[12] H. KNORRER, Geodesies on quadrics and a mechanical problem of C. Neumann, J. rein angew. Math. 334 (1982), 69-78. · Zbl 0478.58014 · doi:10.1515/crll.1982.334.69
[13] I. M. KRICHEVER, Integration of nonlinear equations by methods of algebraic geometry, Funkts. Anal. Prilozh. 11 (1) (1977), 15-31. · Zbl 0368.35022 · doi:10.1007/BF01135528
[14] H. P. McKEAN, JR. AND P. VAN MOERBEKE, The spectrum of Hill’s equation, Invent Math. 30 (1975), 217-274. · Zbl 0319.34024 · doi:10.1007/BF01425567
[15] J. MOSER, Geometry of quadrics and spectral theory, in The Chern Symposium 1979, Springer Verlag, (1981), 147-188. · Zbl 0455.58018
[16] J. MOSER, Various aspects of integrable Hamiltonian systems, in Dynamical System (C. I. M. E. 1978) Liguori Ed., Naples (1980), 137-195. · Zbl 0468.58011
[17] D. MUMFORD, An algebro-geometric construction of commuting operators, in Int’l. Symp on Algebraic Geometry, Kyoto 1977, Kinokuniya, Tokyo (1978), 115-153. · Zbl 0423.14007
[18] C. NEUMANN, De problemate quodam mechanico, quod ad primam integralium ultrael lipticorum classem revocatur, J. reine angew. Math. 56 (1859), 46-63. · ERAM 056.1472cj
[19] T. RATIU, The C. Neumann problem as a completely integrable system on an adjoin orbit, Trans. AMS, 264 (1981), 321-329. · Zbl 0475.58006 · doi:10.2307/1998542
[20] T. RATIU, The Lie algebraic interpretation of the complete integrability of the Rosochatiu system, in Mathematical Methods in Hydrodynamics and Integrability in Dynamical System, Am. Inst. of Phys. (1982), 108-115. · Zbl 0566.58018
[21] A. G. REIMAN, Integrable Hamiltonian systems connected with graded Lie algebras, Zap Nauch. Sem. LOMI, 95 (1980), 3-54. · Zbl 0488.70013
[22] E. ROSOCHATIUS, Uber Bewegungen eines Punktes, Dissertation, Gttingen 1877.
[23] R. J. SCHILLING, Particle representations for finite gap operators, Dissertation, Univ. o Arizona, 1982.
[24] R. J. SCHILLING, Trigonal curves and operator deformation theory, 130 pp., NYU preprint, 1984.
[25] K. UHLENBECK, Minimal 2-spheres and tori in Sk, preprint, 1975.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.