×

Time-dependent scattering theory for elliptic differential operators. (English. Russian original) Zbl 0568.35075

J. Sov. Math. 28, 814-824 (1985); translation from Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 115, 285-300 (1982).
The Enss approach is used to develop the scattering theory for the matrix elliptic differential operators. The eigenvalues of the ”unperturbed” symbol are allowed to change their multiplicities. The coefficients of the perturbation are assumed to decay sufficiently quickly at infinity.

MSC:

35P25 Scattering theory for PDEs
35B20 Perturbations in context of PDEs
35P20 Asymptotic distributions of eigenvalues in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] V. Enss, ”Asymptotic completeness for quantum mechanical potential scattering,” Commun. Math. Phys.,61, 285–291 (1978). · Zbl 0389.47005 · doi:10.1007/BF01940771
[2] B. Simon, ”Phase space analysis of simple scattering systems: Extensions of some works of Enss,” Duke Math. J.,46, No. 1, 119–168 (1979). · Zbl 0402.35076 · doi:10.1215/S0012-7094-79-04607-6
[3] E. Mourre, ”Link between the geometrical and the spectral transformation approaches in scattering theory,” Commun. Math. Phys.,68, 91–94 (1979). · Zbl 0429.47006 · doi:10.1007/BF01562544
[4] D. R. Yafaev, ”On the proof of Enss of asymptotic completeness in potential scattering theory,” LOMI Preprint E-2-79, Leningrad (1979). · Zbl 0438.47012
[5] E. B. Davies, ”On Enss’ approach to scattering theory,” Duke Math. J.,47, No. 1, 171–185 (1980). · Zbl 0434.47014 · doi:10.1215/S0012-7094-80-04713-4
[6] P. A. Perry, ”Mellin transforms and scattering theory. I. Short range potentials,” Duke Math. J.,47, No. 1, 187–193 (1980). · Zbl 0445.47009 · doi:10.1215/S0012-7094-80-04714-6
[7] W. O. Amrein, D. B. Pearson, and M. Wollenberg, Evanescence of states and asymptotic completeness. Preprint Univ. Genève, UGVA-DPT 1980/05-242 (1980).
[8] J. Ginibre, La méthode ”dependant du temps” dans le probléme de la complétude asymptotique. Preprint Univ. Paris-Sud, LPTHE 80/10 (1980).
[9] V. Enss, ”Geometric methods in spectral and scattering theory of Schrödinger operators,” in: Rigorous Atomic and Molecular Physics, Plenum Press, New York (1980/81).
[10] M. Sh. Birman, ”Scattering problems for differential operators with constant coefficients,” Funkts. Anal. Prilozhen.,3, No. 3, 1–16 (1969). · Zbl 0249.34035 · doi:10.1007/BF01078269
[11] M. Sh. Birman, ”Scattering problems for differential operators under a perturbation of the space,” Izv. Akad. Nauk SSSR,35, No. 2, 440–455 (1971).
[12] V. G. Deich, ”The completeness of the wave operators for systems with uniform propagation,” J. Sov Math.,2, No. 2, (1974).
[13] M. Sh. Birman, ”A local test for the existence of wave operators,” Izv. Akad. Nauk SSSR,32, No. 4, 914–942 (1968).
[14] P. D. Lax and R. S. Phillips, Scattering Theory, Academic Press, New York (1967).
[15] L. D. Faddeev, ”On a model of Friedrichs in the theory of perturbations of the continuous spectrum,” Tr. Mat. Inst. Akad. Nauk SSSR,73, 292–313 (1964). · Zbl 0148.12801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.