×

The weight in a Serre-type conjecture for tame \(n\)-dimensional Galois representations. (English) Zbl 1232.11065

J.-P. Serre conjectured in 1973 that every two-dimensional irreducible, odd Galois representation arises from a modular eigenform, and predicted later in [Duke Math. J. 54, 179–230 (1987; Zbl 0641.10026)] the level and weight for some such an eigenform. Serre’s conjecture has now been proved by C. Khare and J.-P. Wintenberger [“Serre’s modularity conjecture. I, II”, Invent. Math. 178, No. 3, 485–504 (2009; Zbl 1304.11041), ibid. 505–586 (2009; Zbl 1304.11042)] and M. Kisin [“Modularity of 2-adic Barsotti-Tate representations”, Invent. Math. 178, No. 3, 587–634 (2009; Zbl 1304.11043)].
Consider now \(n\)-dimensional irreducible, odd Galois representations \(\rho: \text{Gal}(\overline {\mathbb Q}/{\mathbb Q}) \to GL_n(\overline{{\mathbb F}}_p)\). A. Ash, D. Doud and D. Pollack [Duke Math. J. 112, No.3, 521–579 (2002; Zbl 1023.11025)] and A. Ash and W. Sinnott [Duke Math. J. 105, No. 1, 1–24 (2000; Zbl 1015.11018)] conjectured that such \(\rho\) arise in the mod \(p\) cohomology of \(\Gamma_1(N^{?}(\rho)) \leq \text{SL}_n({\mathbb Z})\), where \(N^{?}(\rho)\) is the Artin conductor of \(\rho\). The eigenvectors in mod \(p\) cohomology under a natural Hecke action are group cohomology with coefficients in irreducible modules of \(\text{GL}_n(\overline{{\mathbb F}}_p\) over \(\overline{{\mathbb F}}_p\), on which \(\Gamma_1(N^{?}(\rho))\) acts via reduction modulo \(p\)), and which are called Serre weights. The author’s Conjecture 1.1 predicts the set of all regular Serre weights that can occur for an \(n\)-dimensional irreducible, odd, and tamely ramified at \(p\), Galois representation \(\rho\). When \(n = 3\), this predicted set of regular Serre weights contains the weights predicted by Ash, Doud, Pollack, and Sinnott as a proper subset, and computational evidence for the extra weights is provided by calculations of Doud and Pollack. The author also obtains theoretical evidence for the conjecture in the case \(n = 4\). He also discusses the compatibility of his conjecture with conjectures of T. Gee [Math. Ann. 350, No. 1, 107–144 (2011; Zbl 1276.11085)] and of K. Buzzard, F. Diamond and F. Jarvis [Duke Math. J. 155, No. 1, 105–161 (2010; Zbl 1227.11070)].

MSC:

11F80 Galois representations
20C33 Representations of finite groups of Lie type
11F75 Cohomology of arithmetic groups
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J. Arthur and L. Clozel, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula , Ann. of Math. Stud. 120 , Princeton Univ. Press, Princeton, 1989. · Zbl 0682.10022
[2] A. Ash, Galois representations attached to mod \(p\) cohomology of \(\mathrm GL(n,\mathbf Z)\), Duke Math. J. 65 (1992), 235–255. · Zbl 0774.11024 · doi:10.1215/S0012-7094-92-06510-0
[3] A. Ash, D. Doud, and D. Pollack, Galois representations with conjectural connections to arithmetic cohomology , Duke Math. J. 112 (2002), 521–579. · Zbl 1023.11025 · doi:10.1215/S0012-9074-02-11235-6
[4] A. Ash and W. Sinnott, An analogue of Serre’s conjecture for Galois representations and Hecke eigenclasses in the mod \(p\) cohomology of \(\mathrm GL(n,\mathbf Z)\), Duke Math. J. 105 (2000), 1–24. · Zbl 1015.11018 · doi:10.1215/S0012-7094-00-10511-X
[5] A. Ash and G. Stevens, Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues , J. Reine Angew. Math. 365 (1986), 192–220. · Zbl 0596.10026
[6] G. E. Bredon, Sheaf Theory , 2nd ed., Grad. Texts in Math. 170 , Springer, New York, 1997.
[7] D. Bump, Automorphic Forms and Representations , Cambridge Stud. Adv. Math. 55 , Cambridge Univ. Press, Cambridge, 1997. · Zbl 0911.11022
[8] K. Buzzard, F. Diamond, and F. Jarvis, On Serre’s conjecture for mod \(l\) Galois representations over totally real fields, preprint,\arxiv0810.2106v2[math.NT]
[9] R. W. Carter, Finite Groups of Lie Type , Pure Appl. Math. (N.Y.), Wiley, New York, 1985. · Zbl 0567.20023
[10] L. Clozel, “Motifs et formes automorphes: applications du principe de fonctorialité” in Automorphic Forms, Shimura Varieties, and \(L\)-functions, Vol. I (Ann Arbor, Mich., 1988) , Perspect. Math. 10 , Academic Press, Boston, 1990, 77–159. · Zbl 0705.11029
[11] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields , Ann. of Math. (2) 103 (1976), 103–161. JSTOR: · Zbl 0336.20029 · doi:10.2307/1971021
[12] F. Diamond, “A correspondence between representations of local Galois groups and Lie-type groups” in \(L\) -functions and Galois Representations (Durham, England, 2004), London Math. Soc. Lecture Note Ser. 320 , Cambridge Univ. Press, Cambridge, 2007, 187–206. · Zbl 1230.11069
[13] F. Digne and J. Michel, Representations of Finite Groups of Lie Type , London Math. Soc. Stud. Texts 21 , Cambridge Univ. Press, Cambridge, 1991. · Zbl 0815.20014
[14] D. Doud, “Three-dimensional Galois representations with conjectural connections to arithmetic cohomology” in Number Theory for the Millennium, I (Urbana, Ill., 2000) , A K Peters, Natick, Mass., 2002, 365–375. · Zbl 1035.11024
[15] -, Supersingular Galois representations and a generalization of a conjecture of Serre , Experiment. Math. 16 (2007), 119–128. · Zbl 1149.11027 · doi:10.1080/10586458.2007.10128989
[16] T. Gee, Automorphic lifts of prescribed types , preprint,\arxiv0810.1877v1[math.NT] · Zbl 1276.11085
[17] A. Grothendieck, Sur quelques points d’algèbre homologique , Tôhoku Math. J. 9 (1957), 119–221. · Zbl 0118.26104
[18] M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties , Ann. of Math. Stud. 151 , Princeton Univ. Press, Princeton, 2001. · Zbl 1036.11027
[19] G. Henniart, On the local Langlands conjecture for \(\mathrm GL(n)\) : the cyclic case, Ann. of Math. (2) 123 (1986), 145–203. JSTOR: · Zbl 0588.12010 · doi:10.2307/1971354
[20] F. Herzig, The weight in a Serre-type conjecture for tame \(n\)-dimensional Galois representations , Ph.D. dissertation, Harvard University, Cambridge, Mass., 2006. · Zbl 1232.11065
[21] F. Herzig and J. Tilouine, Conjecture de type de Serre et formes compagnons pour \(\mathrm GSp_4\) , preprint,\arxiv0812.1525v1[math.NT]
[22] J. E. Humphreys, Ordinary and modular representations of Chevalley groups , Lecture Notes in Math. 258 , Springer, Berlin, 1976. · Zbl 0341.20037 · doi:10.1007/BFb0079105
[23] -, Modular Representations of Finite Groups of Lie Type , London Math. Soc. Lecture Note Ser. 326 , Cambridge Univ. Press, Cambridge, 2006. · Zbl 1113.20016
[24] H. Jacquet, “Principal \(L\)-functions of the linear group” in Automorphic Forms, Representations and \(L\)-functions (Corvallis, Ore., 1977), Part 2 , Proc. Sympos. Pure Math., XXXIII , Amer. Math. Soc., Providence, 1979, 63–86. · Zbl 0413.12007
[25] J. C. Jantzen, Zur Charakterformel gewisser Darstellungen halbeinfacher Gruppen und Lie-Algebren , Math. Z. 140 (1974), 127–149. · Zbl 0288.20059 · doi:10.1007/BF01213951
[26] -, Über das Dekompositionsverhalten gewisser modularer Darstellungen halbeinfacher Gruppen und ihrer Lie-Algebren , J. Algebra 49 (1977), 441–469. · Zbl 0386.20018 · doi:10.1016/0021-8693(77)90252-6
[27] -, Über Darstellungen höherer Frobenius-Kerne halbeinfacher algebraischer Gruppen , Math. Z. 164 (1979), 271–292. · Zbl 0396.20029 · doi:10.1007/BF01182273
[28] -, Darstellungen halbeinfacher Gruppen und ihrer Frobenius-Kerne , J. Reine Angew. Math. 317 (1980), 157–199. · Zbl 0451.20040 · doi:10.1515/crll.1980.317.157
[29] -, Zur Reduktion modulo \(p\) der Charaktere von Deligne und Lusztig, J. Algebra 70 (1981), 452–474. · Zbl 0477.20024 · doi:10.1016/0021-8693(81)90229-5
[30] -, “Representations of Chevalley groups in their own characteristic” in The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) , Proc. Sympos. Pure Math. 47 , Part 1, Amer. Math. Soc., Providence, 1987, 127–146. · Zbl 0652.20042
[31] -, Representations of Algebraic Groups , 2nd ed., Math. Surveys Monogr. 107 , Amer. Math. Soc., Providence, 2003. · Zbl 1034.20041
[32] C. Khare and J.-P. Wintenberger, Serre’s modularity conjecture (I) , · Zbl 1304.11041
[33] -, Serre’s modularity conjecture (II ), · Zbl 1304.11042
[34] M. Kisin, Modularity of 2-adic Barsotti-Tate representations , · Zbl 1304.11043 · doi:10.1007/s00222-009-0207-5
[35] M. Rapoport, A positivity property of the Satake isomorphism , Manuscripta Math. 101 (2000), 153–166. · Zbl 0941.22006 · doi:10.1007/s002290050010
[36] J.-P. Serre, “Cohomologie des groupes discrets” in Prospects in Mathematics (Princeton, N.J., 1970) , Ann. of Math. Studies 70 , Princeton Univ. Press, Princeton, 1971, 77–169. · Zbl 0235.22020
[37] -, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques , Invent. Math. 15 (1972), 259–331. · Zbl 0235.14012 · doi:10.1007/BF01405086
[38] -, Sur les représentations modulaires de degré \(2\) de \(\mathrm Gal(\overline\mathbf Q/\mathbf Q)\), Duke Math. J. 54 (1987), 179–230. · Zbl 0641.10026 · doi:10.1215/S0012-7094-87-05413-5
[39] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions , Kanô Memorial Lectures 1 , Iwanami Shoten, Tokyo, Publ. Math. Soc. Japan 11 , Princeton Univ. Press, Princeton, 1971. · Zbl 0221.10029
[40] T. A. Springer, “Characters of special groups” in Seminar on Algebraic Groups and Related Finite Groups (Princeton, N.J., 1968/69) , Lecture Notes in Math. 131 , Springer, Berlin, 1970, 121–166. · Zbl 0259.20039
[41] -, “Cusp forms for finite groups” in Seminar on Algebraic Groups and Related Finite Groups (Princeton, N.J., 1968/69) , Lecture Notes in Math. 131 , Springer, Berlin, 1970, 97–120. · Zbl 0263.20024
[42] -, Linear Algebraic Groups , 2nd ed., Prog. Math. 9 , Birkhäuser Boston, Boston, 1998. · Zbl 0927.20024
[43] J. Tate, “Number theoretic background” in Automorphic Forms, Representations and \(L\)-functions (Corvallis, Ore., 1977) , Part 2, Proc. Sympos. Pure Math., XXXIII , Amer. Math. Soc., Providence, 1979, 3–26. · Zbl 0422.12007
[44] S. A. Youssef and S. G. Hulsurkar, On connectedness of graphs on Weyl groups of type \(A_ n\) \((n\geq 4)\), Arch. Math. (Brno) 31 (1995), 163–170. · Zbl 0854.20052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.