×

Integral with respect to nonadditive measure and estimates of indicator of entire functions. (English. Russian original) Zbl 0542.30032

Sib. Math. J. 24, 143-153 (1983); translation from Sib. Mat. Zh. 24, No. 1(137), 175-186 (1983).
Let us consider a family X consisting of open sets \(\theta\) on \(S_ 1=\{z\in {\mathbb{R}}^ 2:| z| =1\},\) and assume that \(S_ 1\in X\). Let \(\delta\) (\(\theta)\) be a nonadditive measure on X. Denote \(K_{r,\theta}=\{z:| z|<r,\quad \arg \quad z\in \theta \}.\) Let \(n_ f(K_{r,\theta})\) be a number of zeros in \(K_{r,\theta}\) of an entire function f of normal type with a proximate order \(\rho\) (r)\(\to \rho\), and let \({\bar \Delta}'(\theta,f)=\lim_{r\to \infty}r^{- \rho(r)}n_ f(K_{r,\theta})\) be the upper angular density of zeros of f. Denote at last \(A'(\delta,X)=\{f:{\bar \Delta}'(\theta,f)\leq \delta(\theta),\theta \in X\}.\) The main result is the theorem: if the nonadditive measure \(\delta\) satisfies the equality \(\delta(\theta)=\delta({\bar \theta})\), for all \(\theta \in X\), then \[ \sup \{h_ f(\phi):f\in A'(\delta,X)\}=X_{(z)}-\int_{R^ 2}H^+(e^{i\phi}/\zeta,[\rho])d\delta_{(z)}(\zeta). \] There exists a function \(f\in A'(\delta,X),\) such that the equality sign holds for any \(\phi \in S_ 1\). Here \(h_ f\) is the Phragmén-Lindelöf indicator of f, \(H^+\) is the Weierstraß primary factor, and on the right side X-\(\int d\delta\) is the integral on a nonadditive measure introduced and studied by the author. This investigation continued and refines the works of A. A. Gol’dberg [Mat. Sb., Nov. Ser. 58(100), 289-334 (1962; Zbl 0121.291), ibid. 61(103), 334-349 (1963; Zbl 0141.076), ibid. 65(107), 414-453 (1964; Zbl 0141.077), ibid. 66(108), 411-457 (1965; Zbl 0141.077)) and V. S. Azarin in Teor. Funkts. Funkts. Anal. Prilozh. 18, 18-50 (1973; Zbl 0285.30019).
Reviewer: A.Hejfić

MSC:

30D15 Special classes of entire functions of one complex variable and growth estimates
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] B. Ya. Levin, Distribution of Zeros of Entire Functions, Amer. Math. Soc. (1972). · Zbl 0152.06703
[2] M. I. Andrashko, ?Extremal indicator of entire function with positive zeros of order less than unity,? Dop. Akad. Nauk Ukr. SSR, No. 7, 869-872 (1960).
[3] A. A. Gol’dberg, ?Extremal indicator for entire function with positive zeros,? Sib. Mat. Zh.,3, No. 2, 170-177 (1962).
[4] N. V. Govorov, ?Extremal indicator of entire function with positive zeros of assigned upper and lower density,? Dop. Akad. Nauk Ukr. SSR, No. 2, 148-150 (1966).
[5] A. A. Gol’dberg, ?Integral with respect to semiadditive measure and its use in the theory of entire functions. I, II, III, IV,? Mat. Sb.,58 (100), 289-334 (1962);61 (103), 334-349 (1963);65 (107), 414-453 (1964);66 (108), 412-449 (1965).
[6] A. A. Kondratyuk, ?Extremal indicator for entire functions with positive zeros. I, II? Litov. Mat. Sb.,7, No. 1 (1967);8, No. 1 (1968).
[7] A. A. Kondratyuk, ?Entire functions with finite maximal density of zeros,? Teor. Funktsii, Funkts. Anal., Prilozhen., No. 10, 11, Kharkov (1970).
[8] V. S. Azarin, ?Extremal problems on entire functions,? Teor. Funktsii, Funkts. Anal. Prilozhen., No. 18 18-49, Kharkov (1973).
[9] N. Bourbaki, Integration, Addison-Wesley (1977).
[10] V. S. Azarin, Theory of Growth of Subharmonic Functions [in Russian], Khakov State Univ. (1978). · Zbl 1157.31001
[11] N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag (1972). · Zbl 0253.31001
[12] V. S. Azarin, ?On the asymptotic behavior of subharmonic functions of finite order,? Mat. Sb.,108 (150), No. 2, 147-167 (1979).
[13] V. S. Azarin, ?On the rays of completely regular growth of an entire function,?, Mat. Sb.,79 (121), 463-476 (1968).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.