×

Opérateurs intégraux singuliers sur certaines courbes du plan complexe. (French) Zbl 0537.42016

Let \(\Gamma\) be a rectifiable curve in the plane, and \(x\to z(x)\) its arc length parametrization. One can define the Cauchy integral operator by \(Tf(x)=\lim_{\epsilon \to 0}\int_{| x-y|<\epsilon}1/z(x)- z(y)f(y)dz(y).\) We prove that the class of rectifiable curves for which this operator extends to a bounded operator on \(L^ 2({\mathbb{R}})\) is the class of Ahlfors’ ”regular curves”. A curve \(\Gamma\) is regular if for some \(C>0\), the arc length of the intersection of \(\Gamma\) with any disc is always less than C times the radius of the disc. (For instance, ord- arc curves are regular.) The regular Jordan curves are therefore the rectifiable Jordan curves \(\Gamma\) for which \(L^ 2(\Gamma)\) is the direct sum of the two Hardy spaces of analytic functions.
The boundedness of T was proved by A. P. Calderon [Proc. Natl. Acad. Sci. USA 74, 1324-1327 (1977; Zbl 0373.44003)] when \(\Gamma\) is the graph of a Lipschitz function \(\phi\) with \(\| \phi '\|_{\infty}<\delta\) for some (unknown) constant \(\delta\). R. R. Coifman, A. McIntosh and Y. Meyer [L’intégrale de Cauchy difinit un opérateur borné sur \(L^ 2\) pour les courbes Lipschitziennes, Ann. Math., II. Ser. 116, 361-387 (1982; Zbl 0497.42012)] extended this result to any \(\delta>0.\)
We also give a ”geometric” proof of the Coifman-McIntosh-Meyer theorem. A slightly improved version of it can be found in the CMA Research Report 22, 1984 Australian National University (Canberra, Australia). More precise estimates are obtained by T. Murai [”Boundedness of singular integral operators of Calderon type (V)”, Prepr. Ser., Nagoya Univ. Coll. Gen. Educ. (to appear)].

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] A. P. CALDERÓN Cauchy integral on Lipschitz curves and related operators . (Proc. Nat. Acad. Sc., vol. 74, n^\circ 4, 1977 , p. 1324-1327). MR 57 #6445 | Zbl 0373.44003 · Zbl 0373.44003 · doi:10.1073/pnas.74.4.1324
[2] A. P. CALDERÓN , Commutators, singular integrals on Lipschitz curves and applications . (Proc. I.C.M. Helsinski, 1978 , p. 85-96). MR 82f:42016 | Zbl 0429.35077 · Zbl 0429.35077
[3] R. R. COIFMAN , Y. MEYER , Au-delà des opérateurs pseudodifférentiels . (Astérisque 57, Soc. Math. France, 1978 ). MR 81b:47061 | Zbl 0483.35082 · Zbl 0483.35082
[4] R. R. COIFMAN , Y. MEYER , Le théorème de Caldéron par les méthodes de variable réelle . (C. R. Acad. Sc., Paris, vol. 289, 1979 , p. 425-428). MR 80j:42024 | Zbl 0427.42007 · Zbl 0427.42007
[5] R. R. COIFMAN , A. MCINTOSH , Y. MEYER , L’intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes . (Ann. of Math., vol. 116, 1982 , p. 361-387). MR 84m:42027 | Zbl 0497.42012 · Zbl 0497.42012 · doi:10.2307/2007065
[6] R. R. COIFMAN , G. DAVID , Y. MEYER , La solution des conjectures de Calderón . (Advances in Math., vol. 48, n^\circ 2, 1983 , p. 144-148). MR 84i:42025 | Zbl 0518.42024 · Zbl 0518.42024 · doi:10.1016/0001-8708(83)90084-1
[7] M. DE GUZMAN , Differentiation of integrals in \Bbb Rn . (Lecture Notes in Math., p. 481). MR 56 #15866 | Zbl 0327.26010 · Zbl 0327.26010 · doi:10.1007/BFb0081986
[8] P. DUREN , Theory of Hp spaces . (Academic Press, 1970 ). MR 42 #3552 | Zbl 0215.20203 · Zbl 0215.20203
[9] T. W. GAMELIN , Uniform Algebras . (Prentice-Hall Inc., 1969 ). MR 53 #14137 | Zbl 0213.40401 · Zbl 0213.40401
[10] M. V. KELDYSH , M. A. LAVRENTIEV , Sur la représentation conforme des domaines limités par des courbes rectifiables . (Ann. Sci. École Norm. Sup., vol. 54, 1937 , p. 1-38). Numdam | Zbl 0017.21702 | JFM 63.0299.04 · Zbl 0017.21702
[11] Y. MEYER , Communication orale .
[12] E. M. STEIN , Singular integrals and differentiability properties of functions . (Princeton, 1970 ). MR 44 #7280 | Zbl 0207.13501 · Zbl 0207.13501
[13] H. STEINHAUS , Mathématiques en instantanés . Flammarion.
[14] A. ZYGMUND , Trigonometric series (Cambridge University Press, 1968 ). MR 38 #4882 · Zbl 0157.38204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.